Skip to main content
Log in

Molecular-genetic basis of cadmium tolerance and accumulation in higher plants

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Cadmium (Cd) is one of the most wide-ranging and dangerous pollutants for all living organisms, including plants. At present, intensive studies of the mechanisms of Cd accumulation in plant tissues and plant tolerance to its toxic effect are being performed. Data showed the variation in traits of tolerance to and accumulation of Cd in natural populations of both hyperaccumulator species and important crops. A series of mutants with changed sensitivity to this heavy metal was obtained. Several classes of proteins involved in cell responses to Cd ions were revealed in the past decade. The important role of microRNA in plant adaptation to Cd was recently demonstrated. Studies of molecular-genetic mechanisms of Cd tolerance and accumulation in plants are the theoretical basis for the development of technologies for phytoremediation of soils contaminated with heavy metals and provide for the breeding of crop varieties with reduced Cd accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arao, T. and Ae, N., Genotypic Variations in Cadmium Levels of Rice Grain, Soil Sci. Plant Nutr., 2003, vol. 49, pp. 473–479.

    CAS  Google Scholar 

  • Baker, A.J.M., Accumulators and Excluders Strategies in the Response of Plants to Heavy Metals, J. Plant Nutr., 1981, vol. 3, pp. 643–654.

    Article  CAS  Google Scholar 

  • Becher, M., Talke, I., Krall, L., and Krämer, U., Cross-Species Microarray Transcript Profiling Reveals High Constitutive Expression of Metal Homeostasis Genes in Shoots of the Zinc Hyperaccumulator Arabidopsis halleri, Plant J., 2004, vol. 37, pp. 251–268.

    Article  PubMed  CAS  Google Scholar 

  • Belimov, A.A., Safronova, V.I., Tsyganov, V.E., et al., Genetic Variability in Tolerance to Cadmium and Accumulation of Heavy Metals in Pea (Pisum sativum L.), Euphytica, 2003, vol. 131, pp. 25–35.

    Article  CAS  Google Scholar 

  • Belimov, A., Safronova, V., Demchinskaya, S., and Dzyuba, O., Intraspecific Variability of Cadmium Tolerance in Hydroponically Grown Indian Mustard (Brassica juncea L.) Czern.) Seedlings, Acta Physiol. Plant, 2007, vol. 29, pp. 473–478.

    Article  CAS  Google Scholar 

  • Bell, M.J., McLaughlin, M.J., Wright, G.C., and Cruickshank, J., Inter- and Intra-Specific Variation in Accumulation of Cadmium by Peanut, Soybean, and Navy Bean, Aust. J. Agr. Res., 1997, vol. 48, pp. 1151–1160.

    Article  CAS  Google Scholar 

  • Berezin, I., Mizrachy-Dagry, T., Brook, E., and Mizrahi, K., Overexpression of AtMHX in Tobacco Causes Increased Sensitivity to Mg2+, Zn2+, and Cd2+ Ions, Induction of V-ATPase Expression, and a Reduction in Plant Size, Plant Cell Rep., 2008, vol. 27, pp. 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Bert, V., Meerts, P., Saumitou-Laprade, P., et al., Genetic Basis of Cd Tolerance and Hyperaccumulation in Arabidopsis halleri, Plant Soil, 2003, vol. 249, pp. 9–18.

    Article  CAS  Google Scholar 

  • Blanvillain, R., Kim, J., Wu, S., and Lima, A., OXIDA-TIVE STRESS 3 Is a Chromatin-Associated Factor Involved in Tolerance to Heavy Metals and Oxidative Stress, Plant J., 2009, vol. 57, pp. 654–665.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, R.R., Plants That Hyperaccumulate Heavy Metals, Wallingfors: CAB Intl., 1998.

    Google Scholar 

  • Callahan, D.L., Baker, A.J.M., Kolev, S.D., and Wedd, A.G., Metal Ion Ligands in Hyperaccumulating Plants, J. Biol. Inorg. Chem., 2006, vol. 11, pp. 2–12.

    Article  PubMed  CAS  Google Scholar 

  • Chan, D.Y. and Hale, B.A., Differential Accumulation of Cd in Durum Wheat Cultivars: Uptake and Retranslocation as Sources of Variation, J. Exp. Bot., 2004, vol. 55, pp. 2571–2579.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., He, Y., Yang, Y., and Yu, Y., Effect of Cadmium on Nodulation and N2-Fixation of Soybean in Contaminated Soils, Chemosphere, 2003, vol. 50, pp. 781–787.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, J.M., Leisle, D., and Kopytko, G.L., Inheritance of Cadmium Concentration in Five Durum Wheat Crosses, Crop Sci., 1997, vol. 37, pp. 1722–1726.

    Article  Google Scholar 

  • Clemens, S., Molecular Mechanisms of Plant Metal Tolerance and Homeostasis, Planta, 2001, vol. 212, pp. 457–486.

    Article  Google Scholar 

  • Clemens, S., Toxic Metal Accumulation, Responses to Exposure and Mechanisms of Tolerance in Plants, Biochimie, 2006, vol. 88, pp. 1707–1719.

    Article  PubMed  CAS  Google Scholar 

  • Cobbett, C.S., May, M.J., Howden, R., and Rolls, B., The Glutathione-Deficient, Cadmium-Sensitive Mutant, Cad2-1, of Arabidopsis thaliana Is Deficient in γ-Glutamylcysteine Synthetase, Plant J., 1998, vol. 16, pp. 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, E.L., Fett, J.P., and Guerinot, M.L., Expression of the IRT1 Metal Transporter Is Controlled by Metals at the Levels of Transcript and Protein Accumulation, Plant Cell, 2002, vol. 14, pp. 1347–1357.

    Article  PubMed  CAS  Google Scholar 

  • DalCorso, V., Farinati, S., Maistri, S., and Furini, A., How Plants Cope with Cadmium: Staking All on Metabolism and Gene Expression, J. Integr. Plant Biol., 2008, vol. 50, pp. 1268–1280.

    Article  PubMed  CAS  Google Scholar 

  • Ding, Y. and Zhu, Ch., The Role of MicroRNAs in Copper and Cadmium Homeostasis, Biochem. Biophys. Res. Commun., 1991, vol. 386, pp. 6–10.

    Article  Google Scholar 

  • Dolezal, O. and Cobbett, C., Arabinose Kinase-Deficient Mutant of Arabidopsis thaliana, Plant Physiol., 2009, vol. 96, pp. 1255–1260.

    Article  Google Scholar 

  • Dominguez-Solís, J., Gutierrez-Alcalá, G., Vega, J., and Romero, L., The Cytosolic O-Acetylserine(Thiol)Lyase Gene Is Regulated by Heavy Metals and Can Function in Cadmium Tolerance, J. Biol. Chem., 2001, vol. 276, pp. 9297–9302.

    Article  PubMed  Google Scholar 

  • Ebbs, S., Lau, I., Ahner, B., and Kochian, L., Phytochelatin Synthesis Is Not Responsible for Cd Tolerance in the Zn/Cd Hyperaccumulator Thlaspi caerulescens, Planta, 2002, vol. 214, pp. 635–640.

    Article  PubMed  CAS  Google Scholar 

  • Fusconi, A., Gallo, C., and Camusso, W., Effects of Cadmium on Root Apical Meristems of Pisum sativum L.: Cell Viability, Cell Proliferation and Microtubule Pattern As Suitable Markers for Assessment of Stress Pollution, Mut. Res., 2007, vol. 632, pp. 9–19.

    CAS  Google Scholar 

  • Grant, C., Clarke, J., Duguidcand, S., and Chaney, R.L., Selection and Breeding of Plant Cultivars to Minimize Cadmium Accumulation, Sci. Total Environ., 2008, vol. 390, pp. 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Guyon, V., Astwood, J., Garner, E., and Dunker, A., Isolation and Characterization of cDNAs Expressed in the Early Stages of Flavonol-Induced Pollen Germination in Petunia, Plant Physiol., 2000, vol. 123, pp. 699–710.

    Article  PubMed  CAS  Google Scholar 

  • Ha, S., Howden, R., Dietrich, W., and Bugg, S., Phytochelatin Synthase Genes from Arabidopsis and the Yeast Schizosaccharomyces pombe, Plant Cell, 1999, vol. 11, pp. 1153–1163.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J.L. and Williams, L.E., Transition Metal Transporters in Plants, J. Exp. Bot., 2003, vol. 54, pp. 2601–2613.

    Article  PubMed  CAS  Google Scholar 

  • Hanikenne, M., Talke, I.N., Haydon, M.J., et al., Evolution of Metal Hyperaccumulation Required Cis-Regulatory Changes and Triplication of HMA4, Nature, 2008, vol. 453, pp. 391–395.

    Article  PubMed  CAS  Google Scholar 

  • Hart, J.J., Welch, R.M., Norvell, W.A., et al., Zinc Effects on Cadmium Accumulation and Partitioning in Nearisogenic Lines of Durum Wheat That Differ in Grain Cadmium Concentration, New Phytol., 2005, vol. 167, pp. 391–401.

    Article  PubMed  CAS  Google Scholar 

  • Howden, R. and Cobbett, C.S., Cadmium-Sensitive Mutants of Arabidopsis thaliana, Plant Physiol., 1992, vol. 100, pp. 100–107.

    Article  PubMed  CAS  Google Scholar 

  • Howden, R., Andersen, C.R., Goldsbrough, P.B., and Cobbett, C.S., A Cadmium-Sensitive, Glutathione-Deficient Mutant of Arabidopsis thaliana, Plant. Physiol., 1995, 107, pp. 1067–1073.

    Article  PubMed  CAS  Google Scholar 

  • Howden, R., Goldsbrough, P.B., Andersen, C.R., and Cobbett, C.S., Cadmium-Sensitive, cad1 Mutants of Arabidopsis thaliana Are Phytochelatin Deficient, Plant Physiol., 1995b, vol. 107, pp. 1059–1066.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D., Bovet, L., Kushnir, S., and Noh, E., AtATM3 Is Involved in Heavy Metal Resistance in Arabidopsis, Plant Physiol., 2006, vol. 140, pp. 922–932.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D., Bovet, L., Maeshima, M., and Martinoia, E., The ABC Transporter AtPDR8 Is a Cadmium Extrusion Pump Conferring Heavy Metal Resistance, Plant J., 2007, vol. 50, pp. 207–218.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y., Kim, D., Shim, D., and Song, W., Expression of the Novel Wheat Gene TM20 Confers Enhanced Cadmium Tolerance to Bakers’ Yeast, J. Biol. Chem., 2008, vol. 283, pp. 15893–15902.

    Article  PubMed  CAS  Google Scholar 

  • Krotz, R.M., Evangelou, B.P., and Wagner, G.J., Relationships between Cadmium, Zinc, Cd-Binding Peptide, and Organic Acid in Tobacco Suspension Cells, Plant Physiol., 1989, vol. 91, pp. 780–787.

    Article  PubMed  CAS  Google Scholar 

  • Kum, Ch., Wong, E., and Cobbett, Ch., HMA P-Type ATPases Are the Major Mechanism for Root-to-Shoot Cd Translocation in Arabidopsis thaliana, New Phytol., 2009, vol. 181, pp. 71–78.

    Article  Google Scholar 

  • Kushnir, S., Babiychuk, E., Storozhenko, S., and Davey, M., A Mutation of the Mitochondrial ABC Transporter Sta1 Leads to Dwarfism and Chlorosis in the Arabidopsis Mutant Starik, Plant Cell, 2001, vol. 13, pp. 89–100.

    Article  PubMed  CAS  Google Scholar 

  • Lane, T.W., Saito, M.A., George, G.N., et al., A Cadmium Enzyme from a Marine Diatom, Nature, 2005, vol. 435, p. 42.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., He, Z., Pandey, G.K., et al., Functional Cloning and Characterization of a Plant Efflux Carrier for Multidrug and Heavy Metal Detoxification, J. Biol. Chem., 2002, vol. 277, pp. 5360–5368.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Zhu, Q., Zhang, Z., et al., Variations in Cadmium Accumulation among Rice Cultivars and Types and the Selection of Cultivars for Reducing Cadmium in the Diet, J. Sci. Food Agr., 2005, vol. 85, pp. 147–153.

    Article  CAS  Google Scholar 

  • Liu, M.Q., Yanai, J., Jiang, R.F., et al., Does Cadmium Play a Physiological Role in the Hyperaccumulator Thlaspi caerulescens?, Chemosphere, 2008, vol. 71, pp. 1276–1283.

    Article  PubMed  CAS  Google Scholar 

  • Lombi, E., Zhao, F.J., Dunham, S.J., and McGrath, S.P., Cadmium Accumulation in Populations of Thlaspi caerulescens and Thlaspi goesingense, New Phytol., 2000, vol. 145, pp. 11–20.

    Article  CAS  Google Scholar 

  • Macnair, M.R., Bert, V., Huitson, S.B., et al., Zinc Tolerance and Hyperaccumulation Are Genetically Independent Characters, Proc. R. Soc. Lond. Biol. Sci., 1999, vol. 266, pp. 2175–2179.

    Article  CAS  Google Scholar 

  • Matsuda, T., Kuramata, M., Takahashi, Y., et al., A Novel Plant Cysteine-Rich Peptide Family Conferring Cadmium Tolerance to Yeast and Plants, Plant Sign. Behav., 2009, vol. 4, no. 5, pp. 419–421.

    Article  CAS  Google Scholar 

  • Mills, R., Krijger, G., Baccarini, P., et al., Functional Expression of AtHMA4, a P1B-Type ATPase of the Zn/Co/Cd/Pb Subclass, Plant J., 2003, vol. 35, pp. 164–176.

    Article  PubMed  CAS  Google Scholar 

  • Morel, M., Crouzet, J., and Gravot, A., AtHMA3, a P1B-ATPase Allowing Cd/Zn/Co/Pb Vacuolar Storage in Arabidopsis, Plant Physiol., 2009, vol. 149, pp. 894–904.

    Article  PubMed  CAS  Google Scholar 

  • Oomen, R.J.F.J., Wu, J., Lelievre, F., et al., Functional Characterization of NRAMP3 and NRAMP4 from the Metal Hyperaccumulator Thlaspi caerulescens, New Phytol., 2009, vol. 181, pp. 637–650.

    Article  PubMed  CAS  Google Scholar 

  • Ortiz, D.F., Kreppel, L., Speiser, D.M., et al., Heavy Metal Tolerance in the Fission Yeast Requires an ATP-Binding Cassette-Type Vacuolar Membrane Transporter, EMBO J., 1992, vol. 11, pp. 3491–3499.

    PubMed  CAS  Google Scholar 

  • Palmiter, R.D., The Elusive Function of Metallothioneins, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 8428–8430.

    Article  PubMed  CAS  Google Scholar 

  • Pan, A., Yang, M., Tie, F., et al., Expression of Mouse Metallothionein-I Gene Confers Cadmium Resistance in Transgenic Tobacco Plants, Plant. Mol. Biol., 1994, vol. 24, pp. 341–351.

    Article  PubMed  CAS  Google Scholar 

  • Peer, W.A., Baxter, I.R., Richards, E.L., Freeman, J.L., and Murphy, A.S., Phytoremediation and Hyperaccumulator Plants, in Molecular Biology of Metal Homeostasis and Detoxification, Tams, M. J. and Martinoia, E., Eds., Berlin Heidelberg: Springer, 2005, pp. 299–340.

    Google Scholar 

  • Pence, N.S., Larsen, P.B., and Ebbs, S.D., The Molecular Physiology of Heavy Metal Transport in the Zn/Cd Hyperaccumulator, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 4956–4960.

    Article  PubMed  CAS  Google Scholar 

  • Persans, M., Nieman, K., and Salt, D., Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 9995–10000.

    Article  PubMed  CAS  Google Scholar 

  • Prévéral, S., Gayet, L., Moldes, C., et al., A Common Highly Conserved Cadmium Detoxification Mechanism from Bacteria to Humans. Heavy Metal Tolerance Conferred by the ATP-Binding Cassette (ABC) Transporter SpHMT1 Requires Glutathione but not Metal-Chelating Phytochelatin Peptides, J. Biol. Chem., 2009, vol. 284, pp. 4936–4943.

    Article  PubMed  Google Scholar 

  • Reese, R. and Wagner, G., Effects of Buthionine Sulfoximine on Cd-Binding Peptide Levels in Suspensioncultured Tobacco Cells Treated with Cd, Zn, Or Cu, Plant Physiol., 1987, vol. 84, pp. 574–577.

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Becerril, F., Calantzis, C., Turnau, K., et al., Cadmium Accumulation and Buffering of Cadmium-Induced Stress by Arbuscular Mycorrhiza in Three Pisum sativum L. Genotypes, J. Exp. Bot., 2002, vol. 53, pp. 1177–1185.

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Becerril, F., van Tuinen, D., Martin-Laurent, F., et al., Molecular Changes in Pisum sativum L. Roots during Arbuscular Mycorrhiza Buffering of Cadmium Stress, Mycorrhiza, 2005, vol. 16, pp. 51–60.

    Article  PubMed  CAS  Google Scholar 

  • Rivetta, A., Negrini, N., and Cocucci, M., Involvement of Ca2+-Calmodulin in Cd2+ Toxicity During the Early Phases of Radish (Raphanus sativus L.) Seed Germination, Plant Cell Environ., 1997, vol. 20, pp. 600–608.

    Article  CAS  Google Scholar 

  • Roosens, N., Verbruggen, N., Meerts, P., et al., Natural Variation in Cadmium Tolerance and Its Relationship to Metal Hyperaccumulation for Seven Populations of Thlaspi caerulescens from Western Europe, Plant, Cell Environ., 2003, vol. 26, pp. 1657–1672.

    Article  CAS  Google Scholar 

  • Sanita di Toppi, L. and Gabbrielli, R., Response to Cadmium in Higher Plants, Environ. Exp. Bot., 1999, vol. 41, pp. 105–130.

    Article  Google Scholar 

  • Sanjaya, P., Hsiao, P., Su, R., and Ko, S., Overexpression of Arabidopsis thaliana Tryptophan Synthase Beta 1 (AtTSB1) in Arabidopsis and Tomato Confers Tolerance to Cadmium Stress, Plant Cell Environ., 2008, vol. 31, pp. 1074–1085.

    Article  PubMed  CAS  Google Scholar 

  • Schat, H., Kuiper, E., Ten, Bookum W.M., and Vooijs, R., A General Model for the Genetic Control of Copper Tolerance in Silene vulgaris: Evidence from Crosses between Plants from Different Tolerant Populations, Heredity, 1993, vol. 70, pp. 142–147.

    Article  CAS  Google Scholar 

  • Schat, H., Vooijs, R., and Kuiper, E., Identical Major Gene Loci for Heavy Metal Tolerances That Have Independently Evolved in Different Local Populations and Subspecies of Silene vulgaris, Evolution, 1996, vol. 50, pp. 1888–1895.

    Article  CAS  Google Scholar 

  • Seregin, I., Phytochelatins and Their Role in the Detoxification of Cadmium in Higher Plants, Usp. Biol. Khimii, 2001, vol. 41, pp. 283–300.

    CAS  Google Scholar 

  • Shaul, O., Hilgemann, D.W., De-Almeida-Engler, J., et al., Cloning and Characterization of a Novel Mg2+/H+ Exchanger, EMBO J., 1999, vol. 18, pp. 3973–3980.

    Article  PubMed  CAS  Google Scholar 

  • Singh, O., Labana, S., Pandey, G., et al., Phytoremediation: An Overview of Metabolic Ion Decontamination from Soil, Appl. Microb. Biotech., 2003, vol. 61, pp. 405–412.

    CAS  Google Scholar 

  • Smith, S.E. and Macnair, M.R., Hypostatic Modifiers Cause Variation in Degree of Copper Tolerance in Mimulus guttatus, Heredity, 1998, vol. 80, pp. 760–768.

    Article  CAS  Google Scholar 

  • Song, W.-Y., Martinoia, E., Lee, J., et al., A Novel Family Cys-Rich Membrane Proteins Mediates Cadmium Resistance in Arabidopsis, Plant Physiol., 2004, vol. 135, pp. 1027–1039.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, N., Yamaguchi, Y., Koizumi, N., and Sano, H., Functional Characterization of a Heavy Metal Binding Protein CdI19 from Arabidopsis, Plant J., 2002, vol. 32, pp. 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Talke, I.N., Hanikenne, M., and Krämer, U., Zinc-Dependent Global Transcriptional Control, Transcriptional Deregulation, and Higher Gene Copy Number for Genes in Metal Homeostasis of the Hyperaccumulator Arabidopsis halleri, Plant Physiol., 2006, vol. 142, pp. 148–167.

    Article  PubMed  CAS  Google Scholar 

  • Thomine, S., Lelievre, F., Debarbieux, E., et al., AtNRAMP3, a Multispecific Vacuolar Metal Transporter Involved in Plant Responses to Iron Deficiency, Plant J., 2003, vol. 34, pp. 685–695.

    Article  PubMed  CAS  Google Scholar 

  • Thomine, S., Wang, R., Ward, J.M., et al., Cadmium and Iron Transport by Members of a Plant Metal Transporter Family in Arabidopsis with Homology to Nramp Genes, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 4991–4996.

    Article  PubMed  CAS  Google Scholar 

  • Tilstone, G., Macnair, M., and Smith, S., Does Copper Tolerance Give Cadmium Tolerance in Mimulus guttatus?, Heredity, 1997, vol. 79, pp. 445–452.

    Article  CAS  Google Scholar 

  • Titov, A.F., Talanova, V.V., Kaznina, N.M., et al., Ustoichivost’ rastenii k tyazhelym metallam (Plant Resistance to Heavy Metals), Petrozavodsk: Karel. Nauch. Tsentr Ros. Akad. Nauk, 2007.

    Google Scholar 

  • Tommey, A.M., Shi, J., Lindsay, W.P., et al., Expression of the Pea Gene PsMTa in E. coli-Metal Binding Properties of the Expressed Protein, FEBS Lett., 1991, vol. 292, pp. 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Tsyganov, V., Belimov, A., Borisov, A., et al., A Chemically Induced New Pea (Pisum sativum) Mutant SGECdt with Increased Tolerance to, and Accumulation of, Cadmium, Ann. Bot., 2007, vol. 99, pp. 1–11.

    Article  Google Scholar 

  • Tsyganov, V.E., Zabolotnyi, A.I., Budkevich, T.A., et al., Effect of Cadmium on the Development and Functioning of Nodules in Lotus corniculatus L. and Lotus japonicus (Regel.) K. Larsen, Botanika (Issled.), 2010, no. 38, pp. 343–354.

  • Ueno, D., Ma, J.F., Iwashita, T., et al., Identification of the Form of Cd in the Leaves of a Superior Cd Accumulating Ecotype of Thlaspi caerulescens Using Cd-NMR, Planta, 2005, vol. 221, pp. 928–936.

    Article  PubMed  CAS  Google Scholar 

  • Van der Zaal, B.J., Neuteboom, L.W., Pinas, J.E., et al., Over-Expression of a Novel Arabidopsis Gene Related to Putative Zinc-Transporter Genes from Animals Can Lead to Enhanced Zinc Resistance and Accumulation, Plant Physiol., 1999, vol. 119, pp. 1047–1055.

    Article  PubMed  Google Scholar 

  • Verbruggen, N., Hermans, Ch., and Schat, H., Molecular Mechanisms of Metal Hyperaccumulation in Plants, New Phytol., 2009, vol. 181, pp. 759–776.

    Article  PubMed  CAS  Google Scholar 

  • Verret, F., Gravot, A., Auroy, P., et al., Overexpression of AtHMA4 Enhances Root-to-Shoot Translocation of Zinc and Cadmium and Plant Metal Tolerance, FEBS Lett., 2004, vol. 576, pp. 306–312.

    Article  PubMed  CAS  Google Scholar 

  • Vert, G., Grotz, N., and Ddaldchamp, F., IRT1, An Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth, Plant Cell, 2002, vol. 14, pp. 1223–1233.

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk, O.K., Bucher, E.A., Sundaram, M.V., and Rea, P.A., CeHMT-1, a Putative Phytochelatin Transporter, Is Required for Cadmium Tolerance in Caenorhabditis elegans, J. Biol. Chem., 2005, vol. 280, pp. 23684–23690.

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk, O.K., Bucher, E.A., Ward, J.T., and Rea, P.A., A New Pathway for Heavy Metal Detoxification in Animals: Phytochelatin Synthase Is Required for Cadmium Tolerance in Caenorhabditis elegans, J. Biol. Chem., 2001, vol. 276, pp. 20817–20820.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M., Harada, E., Vess, C., et al., Comparative Microarray Analysis of Arabidopsis thaliana and Arabidopsis halleri Roots Identifies Nicotinamine Synthase, a Zip Transporter and Other Genes As Potential Metal Hyperaccumulation Factors, Plant J., 2004, vol. 37, pp. 269–281.

    Article  PubMed  CAS  Google Scholar 

  • Zha, H.G., Jiang, R.F., Zhao, E.J., et al., Co-Segregation Analysis of Cadmium and Zinc Accumulation in Thaspi caerulescens Interecotypic Crosses, New Phytol., 2004, vol. 163, pp. 299–312.

    Article  CAS  Google Scholar 

  • Zhigang, A., Cuijie, L., Yuangang, Z., et al., Expression of BjMT2, a Metallothionein 2 from Brassica juncea, Increases Copper and Cadmium Tolerance in Escherichia coli and Arabidopsis thaliana, but Inhibits Root Elongation in Arabidopsis thaliana Seedlings, J. Exp. Bot., 2006, vol. 57, pp. 3575–3582.

    Article  PubMed  Google Scholar 

  • Zimeri, A.M., Dhankher, O.P., McCaig, B., and Meagher, R.B., The Plant MT1 Metallothioneins Are Stabilized by Binding Cadmium and Are Required for Cadmium Tolerance and Accumulation, Plant. Mol. Biol., 2005, vol. 58, pp. 839–855.

    Article  PubMed  CAS  Google Scholar 

  • Zornoza, P., Vazquez, S., Esteban, E., et al., Cadmium-Stress in Nodulated White Lupin: Strategies to Avoid Toxicity, Plant Physiol. Biochem., 2002, vol. 40, pp. 1003–1009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.A. Kulaeva, V.E. Tsyganov, 2010, published in Ekologicheskaya Genetika, 2010, Vol. 8, No. 3, pp. 3–15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulaeva, O.A., Tsyganov, V.E. Molecular-genetic basis of cadmium tolerance and accumulation in higher plants. Russ J Genet Appl Res 1, 349–360 (2011). https://doi.org/10.1134/S2079059711050108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059711050108

Keywords

Navigation