Skip to main content
Log in

The contribution of genotype-environmental effects to the formation of qualitative traits of inbred and outbred plants

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

An assumption about the epigenetic nature of genotype-environment interaction is made and proven. When genetic variances in descendants of various ages are analyzed, this interaction manifests itself as epistasis. Study of inbred (common spring wheat) and outbred (hybrid maize) forms shows that their contribution of genotype-environmental factors to quantitative traits in hybrids is less than in homozygous forms. With regard to the substantially epigenetic nature of the genotype-environmental interaction, this trend can be explained in terms of the epigenetic balance hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batson, W., Mendel’s Principles of Heredity, Ed. W. Batson, Cambridge, 1909.

  • Blanc, G., Charcosset, A., and Mangin, B., et al., Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize, Theor. Appl. Genet., 2006, vol. 113, no. 2, pp. 206–224.

    Article  PubMed  CAS  Google Scholar 

  • Börner, A., Schumann, E., and Frste, A., et al., Mapping of Quantitative Trait Loci Determining Agronomic Important Characters in Hexaploid Wheat (Triticum Aestivum, L.), Theor. Appl. Genet., 2002, vol. 105, pp. 921–936.

    Article  PubMed  Google Scholar 

  • Brink, R. A., A genetic change associated with the R locus in maize which is directed and potentially reversible, Genetics, 1956, vol. 41, pp. 872–889.

    PubMed  CAS  Google Scholar 

  • Brink, R. A., Paramutation and chromosome organization, Quart. Rev. Biol., 1960, vol. 35, pp. 120–137.

    Article  PubMed  CAS  Google Scholar 

  • Caligari, P. D. S., Mather, K., Genotype × environment interaction. III. Interactions in Drosophila melanogaster, Proc. R. Soc. Lond., 1975, B. 191, pp. 387–411.

    Article  PubMed  CAS  Google Scholar 

  • Chang, S., Whitelaw, E., Epigenetic germline inheritance, Curr. Opin. Genet. and Developm., 2004, vol. 14, pp. 692–696.

    Article  Google Scholar 

  • Chesnokov, Yu. V., Pochepnya, N. V., Berner, A., et al., Ecological-Genetic Organization of Plant Quantitative Traits and Mapping of the Loci Determining Agronomically Important Traits in Soft Wheat, Dokl. Akad. Nauk, 2008, vol. 418, no. 5, pp. 693–696 [Dokl. Biochem. Biophys. (Engl. Transl.), 2008, vol. 418, no. 5, pp. 36–39].

    Google Scholar 

  • Connoly, V., Jinks, I. L.,: The genetical architecture of general and specific environmental sensitivity, Heredity, 1975, vol. 35, P. 2, pp. 249–259.

    Article  Google Scholar 

  • Dorn, L. A., Schmitt, J., Do plasticity genes exist or not?, Progr. Abstr. of 6th Congr. Eur. Soc. Evol. Biol., Arnehm, 24–28 August, 1997, Wagenibgen, 1977.

  • Dragavtsev, V. A. and Aver’yanova, A. F., Mechanisms of Genotype-Environmental Interactions and Homeostasis of Quantitative Traits of Plants, Genetika, 1983a, vol. 19, no. 11, pp. 1806–1810.

    Google Scholar 

  • Dragavtsev, V. A. and Aver’yanova, A. F., Overdetermination of Genetic Formulas of Quantitative Traits under Different Environmental Conditions, Genetika, 1983b, vol. 19, no. 11, p. 1811.

    Google Scholar 

  • Dragavtsev, V. A., Tsil’ke, R. A., Reiter, B. G., et al., Genetika priznakov produktivnosti yarovykh pshenits v Zapadnoi Sibiri (Genetics of Spring Wheat Productivity in the Western Siberia), Novosibirsk, 1984, p. 230

  • Durrant, A., Environmental conditioning of flax, Nature, 1958, vol. 181, pp. 928–929.

    Article  Google Scholar 

  • Durrant, A., The environmental induction of heritable changes in Linum, Heredity, 1962, vol. 17, pp. 27–61.

    Article  Google Scholar 

  • Evans, G. M., Nuclear changes in flax, Heredity, 1968, vol. 23. pp. 25–28.

    Article  Google Scholar 

  • Falconer, D. S., Introduction to Quantitative Genetics. 2nd Ed, New York: Longman Sci. Techn., 1981, p. 438.

    Google Scholar 

  • Fisher, R. A., The correlations between relatives on the supposition of Mendelian inheritance, Trans. Roy. Soc. Edinbourg, 1918, vol. 52, pp. 399–433.

    Google Scholar 

  • Hill, J., Genotype-environment interactions — a challenge for plant breeding, J. Agric. Sci., 1975, vol. 85, P. 3. pp. 477–498.

    Article  Google Scholar 

  • Hill, J., Perkins, J. M., The environmental induction of heritable changes in Nicotiana rustica: effect of geno-type-environment interactions, Genetics, 1969, vol. 61, pp. 661–675.

    PubMed  CAS  Google Scholar 

  • Hill, J., The environmental induction of heritable changes in Nicotiana rustica: Parental and selection lines, Genetics, 1967, vol. 55, pp. 735–754.

    PubMed  CAS  Google Scholar 

  • Holland, J.B., Epistasis and plant breeding, Plant Breed. Rev., 2001, vol. 21, pp. 27–92.

    CAS  Google Scholar 

  • Hull, P., Gove, R. S., Slen, S. B., and Crawford, R. D., A comparison of the interaction, with two types of environment, of pure strains or strain crosses of poultry, Genet. Res., 1963, vol. 4, pp. 370–381.

    Article  Google Scholar 

  • Jinks, J. L., and Pooni H. S., Determination of the environmental sensitivity of selection lines of Nicotiana rustica by the selection environment, Heredity, 1982, vol. 49, no. 3, pp. 291–294.

    Article  Google Scholar 

  • Jinks, J. L., Jayasekara, N. E. M., and Boughey, H., Joint selection for both extremes of mean performance and of sensitivity to a macroenvironmental variable. I. Single seed descent, Heredity, 1977, vol. 39, no. 3, pp. 345–355.

    Article  Google Scholar 

  • Juengei, T. E., Son, S., Stowe, K. A., and Simms, E. L., Epistasis and genotype-environment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana, Genetica, 2005, vol.123, no. 1/2, pp. 87–105.

    Article  Google Scholar 

  • Katokhin, A. V., Kuznetsova, T. N., and Omel’yanchuk, N. A., (Micro-RNA-Novel Regulators of Eukaryotic Gene Activity), Informatsyionni Vestnik, VOGiS, 2006, vol.10, no. 2, pp. 241–272.

    Google Scholar 

  • Kil’chevskii, A. V. and Khotyleva, L. V., Ekologicheskaya selektsiya rastenii (Ecological Selection of Plants), Minsk: Tekhnalogiya, 1997.

    Google Scholar 

  • Korochkin, L. I., What is Epigenetics, Genetika, 2006, vol. 42, no. 9, pp. 1156–1164.

    PubMed  CAS  Google Scholar 

  • Landry, C. R., Oh, J., Hartl, D. L., and Cavalieri, D., Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes, Gene, 2006, vol. 366, pp. 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Alvarez, O. A., Gutteling, F. W., et al., Mapping determinants of gene expression plasticity by genetical genomics in C. elegans[ital], PLOS Genet., 2006, vol. 2, p. 222.

    Article  Google Scholar 

  • Malmberg, R. L., Held, S., Waits, A., and Mauricio, R., Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and the greenhouse, Genetics, 2006, vol. 171, no. 4, pp. 2012–2027.

    Google Scholar 

  • Parsons, P. A., Genotypic-environmental interactions for various temperatures in Drosophila melanogaster, Genetics, 1959, vol. 44, no. 6, pp. 1325–1333.

    PubMed  CAS  Google Scholar 

  • Paterson, A. H., Damon, S., Hewitt, J. D., et al., Mendelian factors ungerlying quantitative traits in tomato: Comparison across species, generations, and environments, Genetics, 1991, vol. 127, pp. 181–197.

    PubMed  CAS  Google Scholar 

  • Plokhinskii, N. A., Matematicheskie Metody v Biologii (Mathematical Methods in Biology), Moscow: Moscow State University, 1978.

    Google Scholar 

  • Plomin, R., DeFries, J. C., and Loehlin, J. C., Genotypicenvironmental interactions and correlation in the analysis of human behavior, Psychol. Bull., 1977, vol. 84, no. 2, pp. 309–322.

    Article  PubMed  CAS  Google Scholar 

  • Rokitskii, P. F., Biologicheskaya statistika (Biological Statistics), Minsk: Vysheish. shk., 1973.

    Google Scholar 

  • Rutter, M., Moffitt, T. E., and Caspi, A., Gene-environment interplay and psychopathology: multiple varieties but real effects, J. Child Psychol. Psychiatry, 2006, vol. 47, no. 3/4. pp. 226–261.

    Article  PubMed  Google Scholar 

  • Smith, E. N., and Kruglyak, L., Gene-environment interaction in yeast gene expression, PLOS Biol., 2008, vol. 6, no. 4, p. 83.

    Article  Google Scholar 

  • Syukov, V. V., Genetical Substantiation of Background Choice for Quantitative Trait Selection, in Problemy Intensifikatsii i Ekologizatsii Zemledeliya Rossii. Materialy nauchno-prakticheskoy. konferencii June 2006 (Problems of Intensification and Ecological Approaches for Agriculture in Russia. Proceedings of Theoretical and Practical Conference) Rassvet, 2006, pp. 458–462.

  • Syukov, V. V., Zakharov, V. G., Krivobochek, V. G., et al., Metod otbora genotipov yarovoi myagkoi pshenitsy na gomeoadaptivnost’: Metod. ukazaniya (Method of Selection of Soft Spring Wheat for Gomeoadaptivity), Samara, 2008.

  • Ungerer, M. C., Halldorsdottir, S. S., Purugganon, M. D., and Mackay, T. F., Genotype-environmental interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana, Genetics, 2003, vol. 165, pp. 353–365.

    PubMed  CAS  Google Scholar 

  • Vavilov, N. I., Scientific Principles of Wheat Selection, in Teoreticheskie osnovy selektsii rastenii (Theoretical Principles of Plant Selection) vol. 2, Moscow: Leningrad, 1935, pp. 3–214.

    Google Scholar 

  • Wade, M. J., Winther, R. G., Agrawal, A. F., and Goodnight, C. J. Alternative definitions of epistasis: dependence and interaction, Trends Ecol. Evol., 201, vol. 16, no. 9, pp. 498–504.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Syukov.

Additional information

Original Russian Text © V.V. Syukov, E.V. Madyakin, D.V. Kochetkov, 2010, published in Informatsionnyi Vestnik Vavilovskogo Obshchestva Genetikov i Selektsionerov, 2010, Vol. 14, No. 1, pp. 141–147.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syukov, V.V., Madyakin, E.V. & Kochetkov, D.V. The contribution of genotype-environmental effects to the formation of qualitative traits of inbred and outbred plants. Russ J Genet Appl Res 1, 33–37 (2011). https://doi.org/10.1134/S2079059711010102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059711010102

Keywords

Navigation