Skip to main content
Log in

The Role of the Serotonin Pathway of Tryptophan Metabolism in the Development of Neuroinflammation in Alzheimer’s Disease

  • REVIEWS
  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Despite the fact that more than 90% of tryptophan is metabolized via the kynurenine pathway, the serotonin pathway is of great importance for the functioning of the central nervous system. The main products of this pathway are serotonin and melatonin. They provide maintenance of the sleep–wake mode, modulation of oxidative stress activity, apoptosis of neurons and glial elements, regeneration and neuroinflammation. In the pathogenesis of Alzheimer’s disease, neuroinflammation plays one of the main roles. Melatonin and serotonin, being modulators of its intensity, as well as an important component of neurochemical interactions that provide cognitive functions, can be considered as targets for preventive and therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abg Abd Wahab, D.Y., Gau, C.H., Zakaria, R., Muthu Karuppan, M.K., A-Rahbi, B.S., Abdullah, Z., Alrafiah, A., Abdullah, J.M., and Muthuraju, S., Review on cross talk between neurotransmitters and neuroinflammation in striatum and cerebellum in the mediation of motor behaviour, Biomed. Res. Int., 2019, vol. 2019, p. 1767203. PMID: 31815123; PMCID: PMC6877979. https://doi.org/10.1155/2019/1767203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agüero, P., Sainz, M.J., García-Ayllón, M.S., Sáez-Valero, J., Téllez, R., Guerrero-López, R., Pérez-Pérez, J., Jimenéz-Escrig, A., and Gómez-Tortosa, E., α‑Secretase nonsense mutation (ADAM10 Tyr167*) in familial Alzheimer’s disease, Alzheimers Res. Ther., 2020, vol. 12, no. 1, p. 139. PMID: 33129344; PMCID: PMC7603780. https://doi.org/10.1186/s13195-020-00708-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alghamdi, B.S., The neuroprotective role of melatonin in neurological disorders, J. Neurosci. Res., 2018, vol. 96, no. 7, pp. 1136–1149. PMID: 29498103; PMCID: PMC6001545. https://doi.org/10.1002/jnr.24220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson, G., Depression pathophysiology: Astrocyte mitochondrial melatonergic pathway as crucial hub, Int. J. Mol. Sci., 2022, vol. 24, no. 1, p. 350. PMID: 36613794; PMCID: PMC9820523. https://doi.org/10.3390/ijms24010350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andrews, P.W., Bosyj, C., Brenton, L., Green, L., Gasser, P.J., Lowry, C.A., and Pickel, V.M., All the brain’s a stage for serotonin: The forgotten story of serotonin diffusion across cell membranes, Proc. Biol. Sci., 2022, vol. 289, no. 1986, p. 20221565. PMID: 36321487; PMCID: PMC9627707. https://doi.org/10.1098/rspb.2022.1565

  6. Chakraborty, S., Lennon, J.C., Malkaram, S.A., Zeng, Y., Fisher, D.W., and Dong, H., Serotonergic system, cognition, and BPSD in Alzheimer’s disease, Neurosci. Lett., 2019, vol. 704, pp. 36–44.https://doi.org/10.1016/j.neulet.2019.03.050

  7. Chen, D., Zhang, T., and Lee, T.H., Cellular mechanisms of melatonin: Insight from neurodegenerative diseases, Biomolecules, 2020, vol. 10, no. 8, p. 1158. PMID: 32784556; PMCID: PMC7464852. https://doi.org/10.3390/biom10081158

    Article  PubMed  PubMed Central  Google Scholar 

  8. Correia, A.S. and Vale, N., Tryptophan metabolism in depression: A narrative review with a focus on serotonin and kynurenine pathways, Int. J. Mol. Sci., 2022, vol. 23, no. 15, p. 8493. PMID: 35955633; PMCID: PMC9369076. https://doi.org/10.3390/ijms23158493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fakhoury, M., Microglia and astrocytes in Alzheimer’s disease: Implications for therapy, Curr. Neuropharmacol., 2018, vol. 16, no. 5, pp. 508–518. PMID: 28730967; PMCID: PMC5997862. https://doi.org/10.2174/1570159X15666170720095240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan, R., Peng, X., Xie, L., Dong, K., Ma, D., Xu, W., Shi, X., Zhang, S., Chen, J., Yu, X., and Yang, Y., Importance of Bmal1 in Alzheimer’s disease and associated aging-related diseases: Mechanisms and interventions, Aging Cell, 2022, vol. 21, no. 10, p. e13704. PMID: 36056774; PMCID: PMC9577946. https://doi.org/10.1111/acel.13704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fanet, H., Capuron, L., Castanon, N., Calon, F., and Vancassel, S., Tetrahydrobioterin (BH4) pathway: From metabolism to neuropsychiatry, Curr. Neuropharmacol., 2021, vol. 19, no. 5, pp. 591–609. PMID: 32744952; PMCID: PMC8573752. https://doi.org/10.2174/1570159X18666200729103529

  12. Gao, K., Mu, C.L., Farzi, A., and Zhu, W.Y., Tryptophan metabolism: A link between the gut microbiota and brain, Adv. Nutr., 2020, vol. 11, no. 3, pp. 709–723. PMID: 31825083; PMCID: PMC7231603. https://doi.org/10.1093/advances/nmz127

    Article  PubMed  Google Scholar 

  13. Grifka-Walk, H.M., Jenkins, B.R., and Kominsky, D.J., Amino acid Trp: The far out impacts of host and commensal tryptophan metabolism, Front. Immunol., 2021, vol. 12, p. 653208. PMID: 34149693; PMCID: PMC8213022. https://doi.org/10.3389/fimmu.2021.653208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Homolak, J., Mudrovčić, M., Vukić, B., Toljan, K., Circadian, rhythm and Alzheimer’s disease, Med. Sci. (Basel), 2018, vol. 6, no. 3, p. 52. PMID: 29933646; PMCID: PMC6164904. https://doi.org/10.3390/medsci6030052

    Article  CAS  PubMed  Google Scholar 

  15. Jayamohananan, H., Manoj Kumar, M.K., and Aneesh, T.P., 5-HIAA as a potential biological marker for neurological and psychiatric disorders, Adv. Pharm. Bull., 2019, vol. 9, no. 3, pp. 374–381. PMID: 31592064; PMCID: PMC6773935. https://doi.org/10.15171/apb.2019.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khan, S., Barve, K.H., and Kumar, M.S., Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease, Curr. Neuropharmacol., 2020, vol. 18, no. 11, pp. 1106–1125. PMID: 32484110; PMCID: PMC7709159. https://doi.org/10.2174/1570159X18666200528142429

  17. Lee, B.H., Hille, B., and Koh, D.S., Serotonin modulates melatonin synthesis as an autocrine neurotransmitter in the pineal gland, Proc. Natl. Acad. Sci. U.S.A., 2021, vol. 118, no. 43, p. e2113852118. PMID: 34675083; PMCID: PMC8639368. https://doi.org/10.1073/pnas.2113852118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, D., Yu, S., Long, Y., Shi, A., Deng, J., Ma, Y., Wen, J., Li, X., Liu, S., Zhang, Y., Wan, J., Li, N., and Ao, R., Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders, Front. Immunol., 2022, vol. 13, p. 985378. PMID: 36159806; PMCID: PMC9496178. https://doi.org/10.3389/fimmu.2022.985378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, Y., Zhang, J., Wan, J., Liu, A., and Sun, J., Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer’s disease, Biomed. Pharmacother., 2020, vol. 132, p. 110887. PMID: 33254429. https://doi.org/10.1016/j.biopha.2020.110887

    Article  CAS  PubMed  Google Scholar 

  20. Luo, F., Sandhu, A.F., Rungratanawanich, W., Williams, G.E., Akbar, M., Zhou, S., Song, B.J., and Wang, X., Melatonin and autophagy in aging-related neurodegenerative diseases, Int. J. Mol. Sci., 2020, vol. 21, no. 19, p. 7174. PMID: 32998479; PMCID: PMC7584015. https://doi.org/10.3390/ijms21197174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma, C., Hong, F., and Yang, S., Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions, Molecules, 2022, vol. 27, no. 4, p. 1210. PMID: 35209007; PMCID: PMC8876037. https://doi.org/10.3390/molecules27041210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Melhuish Beaupre, L.M., Brown, G.M., Gonçalves, V.F., and Kennedy, J.L., Melatonin’s neuroprotective role in mitochondria and its potential as a biomarker in aging, cognition and psychiatric disorders, Transl. Psychiatry, 2021, vol. 11, no. 1, p. 339. PMID: 34078880; PMCID: PMC8172874. https://doi.org/10.1038/s41398-021-01464-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Modoux, M., Rolhion, N., Mani, S., and Sokol, H., Tryptophan metabolism as a pharmacological target, Trends Pharmacol. Sci., 2021, vol. 42, no. 1, pp. 60–73. PMID: 33256987. https://doi.org/10.1016/j.tips.2020.11.006

    Article  CAS  PubMed  Google Scholar 

  24. Nikolaev, G., Robeva, R., and Konakchieva, R., Membrane melatonin receptors activated cell signaling in physiology and disease, Int. J. Mol. Sci., 2021, vol. 23, no. 1, p. 471. PMID: 35008896; PMCID: PMC8745360.https://doi.org/10.3390/ijms23010471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petrus, P., Cervantes, M., Samad, M., et al., Tryptophan metabolism is a physiological integrator regulating circadian rhythms, Mol. Metab., 2022, vol. 64, p. 101556. PMID: 35914650; PMCID: PMC9382333. https://doi.org/10.1016/j.molmet.2022.101556

  26. Sabir, M.S., Haussler, M.R., Mallick, S., Kaneko, I., Lucas, D.A., Haussler, C.A., Whitfield, G.K., and Jurutka, P.W., Optimal vitamin D spurs serotonin: 1,25-dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO-A) gene expression in cultured rat serotonergic neuronal cell lines, Genes Nutr., 2018, vol. 13, p. 19. PMID: 30008960; PMCID: PMC6042449. https://doi.org/10.1186/s12263-018-0605-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sacramento, P.M., Monteiro, C., Dias, A.S.O., Kasahara, T.M., Ferreira, T.B., Hygino, J., Wing, A.C., Andrade, R.M., Rueda, F., Sales, M.C., Vasconcelos, C.C., and Bento, C.A.M., Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4+ T-cell subsets in multiple sclerosis patients, Eur. J. Immunol., 2018, vol. 48, no. 8, pp. 1376–1388. PMID: 29719048. https://doi.org/10.1002/eji.201847525

    Article  CAS  PubMed  Google Scholar 

  28. Savonije, K. and Weaver, D.F., The role of tryptophan metabolism in Alzheimer’s disease, Brain Sci., 2023, vol. 13, no. 2, p. 292. PMID: 36831835; PMCID: PMC9954102. https://doi.org/10.3390/brainsci13020292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scotton, W.J., Hill, L.J., Williams, A.C., and Barnes, N.M., Serotonin syndrome: Pathophysiology, clinical features, management, and potential future directions, Int. J. Tryptophan Res., 2019, vol. 12, p. 1178646919873925. PMID: 31523132; PMCID: PMC6734608. https://doi.org/10.1177/1178646919873925

    Article  PubMed  PubMed Central  Google Scholar 

  30. Singh, A., Ansari, V.A., Mahmood, T., Ahsan, F., and Wasim, R., Neurodegeneration: Microglia: Nf-Kappab signaling pathways, Drug Res., 2022, vol. 72, no. 9, pp. 496–499. PMID: 36055286. https://doi.org/10.1055/a-1915-4861

    Article  CAS  Google Scholar 

  31. Song, J., Pineal gland dysfunction in Alzheimer’s disease: Relationship with the immune–pineal axis, sleep disturbance, and neurogenesis, Mol. Neurodegener., 2019, vol. 14, no. 1, p. 28. PMID: 31296240; PMCID: PMC6624939. https://doi.org/10.1186/s13024-019-0330-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wan, M., Ding, L., Wang, D., Han, J., and Gao, P., Serotonin: A potent immune cell modulator in autoimmune diseases, Front. Immunol., 2020, vol. 11, p. 186. PMID: 32117308; PMCID: PMC7026253. https://doi.org/10.3389/fimmu.2020.00186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Winn, S.R., Scherer, T., Thöny, B., Ying, M., Martinez, A., Weber, S., Raber, J., and Harding, C.O., Blood phenylalanine reduction corrects CNS dopamine and serotonin deficiencies and partially improves behavioral performance in adult phenylketonuric mice, Mol. Genet. Metab., 2018, vol. 123, no. 1, p. 6–20. PMID: 29331172; PMCID: PMC5786171. https://doi.org/10.1016/j.ymgme.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  34. Kozin, S.A. and Makarov, A.A., The convergence of Alzheimer’s disease pathogenesis concepts, Mol. Biol. (Moscow), 2019, vol. 53, no. 6, pp. 1020–1028. PMID: 31876280. https://doi.org/10.1134/S0026898419060107

    Article  CAS  PubMed  Google Scholar 

  35. Garbuz, D.G., Zatsepina, O.G., and Evgen’ev, M.B., Beta amyloid, tau protein, and neuroinflammation: An attempt to integrate different hypotheses of Alzheimer’s disease pathogenesis, Mol. Biol. (Moscow), 2021, vol. 55, no. 5, pp. 734–747. PMID: 34671002. https://doi.org/10.31857/S0026898421050049

    Article  CAS  PubMed  Google Scholar 

  36. Gogoleva, V.S., Drutskaya, M.S., and Atretkhany, K.S., The role of microglia in the homeostasis of the central nervous system and neuroinflammation, Mol. Biol. (Moscow), 2019, vol. 53, no. 5, pp. 790–798. PMID: 31661478.https://doi.org/10.1134/S0026898419050057

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Sergeeva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants involved in the study.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Makeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomin, A.S., Sergeeva, S.P. The Role of the Serotonin Pathway of Tryptophan Metabolism in the Development of Neuroinflammation in Alzheimer’s Disease. Adv Gerontol 13, 130–137 (2023). https://doi.org/10.1134/S207905702460023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207905702460023X

Keywords:

Navigation