Skip to main content

Melatonin’s Neuroprotective Actions on Hippocampal Neurons

  • Chapter
  • First Online:
Melatonin and Melatonergic Drugs in Clinical Practice

Abstract

Melatonin is the pineal hormone, is an indoleamine, and has a persuasive role in the biological regulation of circadian rhythm, sleep–mood disorders, immunoregulation, cancer, neurodegenerative disorders, and aging. It passively diffuses into the bloodstream, exerting maximum effectiveness and protective action. This protective action is due to direct free radical scavenging and indirect antioxidative effects, especially in cases of neurodegenerative disorders like Alzheimer’s and Parkinson’s disease whose pathogenesis is associated with the cytotoxic effects of free radicals. Melatonin also promotes neurogenesis in adults, thus affecting hippocampal functions and enhancing cognitive and behavioral activities. Therapeutic trials with melatonin have been effective also in slowing down the progression of some neurodegenerative disorders. Studies suggest that melatonin have clinical potential for the treatment of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-HNE:

4-Hydroxy-2-nonenal

Akt:

Protein kinase B (PKB)

CA1:

Cornu ammonis 1

Ca2+ :

Calcium2+ ion

CA3:

Cornu ammonis 3

CAT:

Catalase

GABA:

Gamma-aminobutyric acid

GPx:

Glutathione peroxidase

GSH:

Reduced glutathione

KA:

Kainic acid kainate

MDA:

Malondialdehyde

MT1:

Melatonin receptor 1

MT2:

Melatonin receptor 2

NADPH-d:

Nicotinamide adenine dinucleotide phosphate-diaphorase

NMDA:

N-methyl-d-aspartate

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

PI3K:

Phosphatidylinositide 3-kinases

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  1. Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev. 2005;9:11–24.

    PubMed  Google Scholar 

  2. Reiter RJ, Tan DX. Role of CSF in the transport of melatonin. J Pineal Res. 2002;33:61.

    CAS  PubMed  Google Scholar 

  3. Zizapel N. Melatonin-dopamine interactions: from basic neurochemistry to a clinical setting. Cell Mol Neurobiol. 2001;21:605–16.

    Google Scholar 

  4. Wurtman RJ, Zhdanova I. Improvement of sleep quality by melatonin. Lancet. 1995;346:1491.

    CAS  PubMed  Google Scholar 

  5. Reiter RJ. The pineal and its hormone in the control of reproduction in mammals. Endocr Rev. 1980;1:109–31.

    CAS  PubMed  Google Scholar 

  6. Reiter RJ, Tan DX. Melatonin: a novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc Res. 2003;58:10–9.

    CAS  PubMed  Google Scholar 

  7. Anton Tay F, Dfaz JL, Fernandez-guardiola A. On the effect of melatonin upon human brain: it’s possible therapeutic implications. Life Sci. 1971;10:841–50.

    CAS  Google Scholar 

  8. Lanas O, Olinescu R, Badescu I. Melatonin involvement in oxidation processes. Endocrinologie. 1991;29:147–53.

    Google Scholar 

  9. Reiter RJ. Cytoprotective properties of melatonin: presumed association with oxidative damage and aging. Nutrition. 1998;14:691–6.

    CAS  PubMed  Google Scholar 

  10. Srinivasan V. Melatonin, oxidative stress and ageing. Curr Sci. 1999;76:46–54.

    CAS  Google Scholar 

  11. Tan DX, Manchester LC, Reiter RJ, et al. Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept. 2000;9:137–59.

    CAS  PubMed  Google Scholar 

  12. Reiter RJ, Tan D-X, Leon J, Kilic U, Kilic E. When melatonin gets on your nerves: its beneficial actions in experimental models of stroke. Exp Biol Med (Maywood). 2005;230:104–17.

    CAS  Google Scholar 

  13. Tan DX, Reiter RJ, Manchester LC, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem. 2002;2:181–97.

    CAS  PubMed  Google Scholar 

  14. Reiter RJ. Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol. 1998;56:359–84.

    CAS  PubMed  Google Scholar 

  15. Tan DX, Chen LD, Poeggeler B, et al. Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J. 1993;1:57–60.

    Google Scholar 

  16. Reiter RJ, Acuna-Castroviejo D, Tan DX, Burkhardt S. Free radical–mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci. 2001;939:200–15.

    CAS  PubMed  Google Scholar 

  17. Kilic E, Kilic V, Yulug B, et al. Melatonin reduces disseminates neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. J Pineal Res. 2004;36:171–6.

    CAS  PubMed  Google Scholar 

  18. Kim M, Kim HK, Kim BS, Yim S. Melatonin increases cell proliferation in the dentate gyrus of maternally separated rats. J Pineal Res. 2004;37:193–7.

    CAS  PubMed  Google Scholar 

  19. Lissoni P, Barni S, Meregalli S, et al. Modulation of cancer endocrine therapy by melatonin: a phase II study of tamoxifen plus melatonin in metastatic breast cancer patient progressing under tamoxifen alone. Br J Cancer. 1995;71:854–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Floreani M, Skaper SD, Facci L, Lipartiti M, Giusti P. Melatonin maintains glutathione homeostasis in kainic acid-exposed rat brain tissues. FASEB J. 1997;11:1309–15.

    CAS  PubMed  Google Scholar 

  21. Sainz RM, Mayo JC, Rodriguez C, et al. Melatonin and cell death: differential actions on apoptosis and cancer cells. Cell Mol Life Sci. 2003;60:1407–26.

    CAS  PubMed  Google Scholar 

  22. Stephen DS, Biancamaria A, Laura F, Davide F, Pietro G. Melatonin prevents the delayed death of hippocampal neurons by enhanced excitatory neurotransmission and the nitridergic pathway. FASEB J. 1998;12:725–31.

    Google Scholar 

  23. Pang SF, Tsang CW, Hong GX, Yip PC, Tang PL, Brown GM. Fluctuation of blood melatonin concentrations with age: result of changes in pineal melatonin secretion, body growth, and aging. J Pineal Res. 1990;8:179–92.

    CAS  PubMed  Google Scholar 

  24. Hogan MV, El-Sherif Y, Wieraszko A. The modulation of neuronal activity by melatonin: in vitro studies on mouse hippocampal slices. J Pineal Res. 2001;309:87–96.

    Google Scholar 

  25. El-Sherif Y, Hogan MV, Tesoriero J, Wieraszko A. Factors regulating the influence of melatonin on hippocampal evoked potentials: comparative studies on different strains of mice. Brain Res. 2002;945:191–201.

    CAS  PubMed  Google Scholar 

  26. Dubocovich ML, Hudson RL, Sumaya IC, Masana MI, Manna E. Effect of MT1 melatonin receptor deletion on melatonin mediated phase shift of circadian rhythms in the C57BL/6 mouse. J Pineal Res. 2005;39:113–20.

    CAS  PubMed  Google Scholar 

  27. Dubocovich ML. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med. 2007;8(3):34–42.

    PubMed  Google Scholar 

  28. Benitez-King G, Huerto-Delgadillo L, Anton-Tay F. Binding of 3H-melatonin to calmodulin. Life Sci. 1993;53:201–7.

    CAS  PubMed  Google Scholar 

  29. Benitez-King G, Hernandez ME, Tovar R, Ramirez G. Melatonin activates PKC-alpha but not PKC-epsilon in N1E-115 cells. Neurochem Int. 2001;39:95–102.

    CAS  PubMed  Google Scholar 

  30. Soto-Vega E, Meza I, Ramirez-Rodriguez G, Benitez-King G. Melatonin stimulates calmodulin phosphorylation by protein kinase C. J Pineal Res. 2004;37:98–106.

    CAS  PubMed  Google Scholar 

  31. Reiter RJ. The melatonin rhythm: both a clock and a calendar. Experientia. 1993;49:654–64.

    CAS  PubMed  Google Scholar 

  32. Dawson D, Armstrong SM. Chronobiotics–drugs that shift rhythms. Pharmacol Ther. 1996;69:15–36.

    CAS  PubMed  Google Scholar 

  33. Kunz D. Chronobiotic protocol and circadian sleep propensity index: new tools for clinical routine and research on melatonin sleep. Pharmacopsychiatry. 2004;37:139–46.

    CAS  PubMed  Google Scholar 

  34. Hardeland R, Pandi-Perumal SR, Cardinali DP. Molecules in focus–melatonin. Int J Biochem Cell Biol. 2006;38:313–6.

    CAS  PubMed  Google Scholar 

  35. Esquifino AI, Pandi-Perumal SR, Cardinali DP. Circadian organization of the immune response: a role for melatonin. Clin Appl Immunol Rev. 2004;4:423–33.

    CAS  Google Scholar 

  36. Guerrero JM, Reiter RJ. Melatonin-immune system relationships. Curr Top Med Chem. 2002;2:167–79.

    CAS  PubMed  Google Scholar 

  37. Monti JM, Alvarino F, Cardinali DP, Savio I, Pintos A. Polysomnographic study of the effect of melatonin on sleep in elderly patients with chronic primary insomnia. Arch Gerontol Geriatr. 1999;28:85–98.

    CAS  PubMed  Google Scholar 

  38. Doolen S, Krause DN, Dubocovich ML, Duckles SP. Melatonin mediates two distinct responses in vascular smooth muscle. Eur J Pharmacol. 1998;345:67–9.

    CAS  PubMed  Google Scholar 

  39. Scheer FA, Van Montfrans GA, van Someren EJ, Mairuhu G, Buijs RM. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension. 2004;43:192–7.

    CAS  PubMed  Google Scholar 

  40. Blask DE, Sauer LA, Dauchy C. Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Curr Top Med Chem. 2002;2:113–32.

    CAS  PubMed  Google Scholar 

  41. Srinivasan V. Psychoactive drugs, pineal gland and affective disorders. Prog Neuropsycopharmacol Biol Psychiatry. 1989;13:653–64.

    CAS  Google Scholar 

  42. Srinivasan V. The pineal gland, its physiological and pharmacological role. Indian J Physiol Pharmacol. 1989;33:263–72.

    CAS  PubMed  Google Scholar 

  43. Srinivasan V. Melatonin, biological rhythm disorders and phototherapy. Indian J Physiol Pharmacol. 1997;41:309–28.

    CAS  PubMed  Google Scholar 

  44. Wiechmann AF. Melatonin parallels in pineal gland and retina. Exp Eye Res. 1986;42:507–27.

    CAS  PubMed  Google Scholar 

  45. Marchiafava PL, Longoni B. Melatonin as an antioxidant in retinal photoreceptors. J Pineal Res. 1999;26:184–9.

    CAS  PubMed  Google Scholar 

  46. Liang FQ, Green L, Wang C, Alssadi R, Godley BF. Melatonin protects human retinal pigment epithelial cells against oxidative stress. Exp Eye Res. 2004;78:1069–75.

    CAS  PubMed  Google Scholar 

  47. Uchida K, Okamoto N, Ohara K, Morita Y. Daily rhythm of serum melatonin in patients with dementia of degenerative type. Brain Res. 1996;717:154–9.

    CAS  PubMed  Google Scholar 

  48. Mesulam MM. Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron. 1999;24(3):521–9.

    CAS  PubMed  Google Scholar 

  49. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P. β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286(5440):735–41.

    CAS  PubMed  Google Scholar 

  50. Pappolla MA, Chyan YJ, Omar RA, Hsiao K, Perry G, Smith MA, Bozner P. Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol. 1998;152:871–7.

    CAS  PubMed  Google Scholar 

  51. Blanchard B, Pompon D, Ducrocq C. Nitrosation of melatonin by nitric oxide and peroxynitrite. J Pineal Res. 2000;29:184–92.

    CAS  PubMed  Google Scholar 

  52. Pappolla MA, Chyan Y-J, Poeggeler B, Frangione B, Wilson G, Ghiso J, Reiter RJ. An assessment of the antioxidant antiamyloidogenic properties of melatonin: implications for Alzheimer’s disease. J Neural Transm. 2000;107:203–31.

    CAS  PubMed  Google Scholar 

  53. Ferrari E, Arcaini A, Gornati R, Pelanconi L, Cravello L, Fioravanti M, Solerte SB, Magri F. Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia. Exp Gerontol. 2000;35:1239–50.

    CAS  PubMed  Google Scholar 

  54. Cardinali DP, Brusco LI, Liberczuk C, Furio AM. The use of melatonin in Alzheimer’s disease. Neuro Endocrinol Lett. 2002;23:20–3.

    CAS  PubMed  Google Scholar 

  55. Srinivasan V, Pandi-Perumal SR, Maestroni GJM, Esquifino AI, Hardeland R, Cardinali DP. Role of melatonin in neurodegenerative diseases. Neurotox Res. 2005;7:293–318.

    CAS  PubMed  Google Scholar 

  56. Magri F, Locatelli M, Balza G, et al. Changes in endocrine circadian rhythms as marker of physiological and pathological brain aging. Chronobiol Int. 1997;14:385–96.

    CAS  PubMed  Google Scholar 

  57. Skene DJ, Swaab DF. Melatonin rhythmicity: effects of age and Alzheimer’s disease. Exp Gerontol. 2003;38:199–206.

    CAS  PubMed  Google Scholar 

  58. Beal MF. Mitochondria, free radicals and neurodegeneration. Curr Opin Neurol. 1996;6:661–6.

    CAS  Google Scholar 

  59. Skene DJ, Viven-Roels B, Sparks Hunsaker JC, et al. Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease. Brain Res. 1990;528:170–4.

    CAS  PubMed  Google Scholar 

  60. Bordet R, Devos D, Brique S, et al. Study of circadian melatonin secretion pattern at different stages of Parkinson’s disease. Clin Neuropharmacol. 2003;26:65–72.

    CAS  PubMed  Google Scholar 

  61. Poeggeler B. Melatonin, ageing and age-related diseases: perspectives for prevention, intervention and therapy. Endocrine. 2005;27:201–12.

    CAS  PubMed  Google Scholar 

  62. Gupta YK, Gupta M, Kohli K. Neuroprotective role of melatonin in oxidative stress vulnerable brain. Indian J Physiol Pharmacol. 2003;47:373–86.

    CAS  PubMed  Google Scholar 

  63. Lezoualc’h F, Skutella T, Widmann M, et al. Melatonin prevents oxidative stress-induced cell death in hippocampal cells. Neuroreport. 1996;7:2071–7.

    PubMed  Google Scholar 

  64. Skaper SD, Ancona B, Facci L, et al. Melatonin prevents the delayed death of hippocampal neurons induced by enhanced excitatory neurotransmission and the nitridergic pathway. FASEB J. 1998;12:725–31.

    CAS  PubMed  Google Scholar 

  65. Giusti P, Franceschini D, Petrone M, et al. In vitro and in vivo protection against kainate-induced excitotoxicity by melatonin. J Pineal Res. 1996;20:226–31.

    CAS  PubMed  Google Scholar 

  66. Tan DX, Manchester LC, Reiter RJ, et al. Melatonin protects hippocampal neurons in vivo against kainic acid-induced damage in mice. J Neurosci Res. 1998;54:382–9.

    CAS  PubMed  Google Scholar 

  67. Franceschini D, Skaper SD, Floreani M, et al. Further evidences for neuroprotective effects of melatonin. Adv Exp Med Biol. 1999;467:207–15.

    CAS  PubMed  Google Scholar 

  68. Cagnoli CM, Atabay C, Kharlamova E, et al. Melatonin protects neurons from singlet oxygen-induced apoptosis. J Pineal Res. 1995;18:222–6.

    CAS  PubMed  Google Scholar 

  69. Guerrero JM, Reiter RJ, Ortiz GG, et al. Melatonin prevents increases in neural nitric oxide and cyclic GMP production after transient brain ischemia and reperfusion in the Mongolian gerbil (Meriones unguiculatus). J Pineal Res. 1997;23:24–31.

    CAS  PubMed  Google Scholar 

  70. Manev H, Uz T, Kharlamov A, et al. Increased brain damage after stroke or excitotoxic seizures in melatonin-deficient rats. FASEB J. 1996;10:1546–51.

    CAS  PubMed  Google Scholar 

  71. Joo JY, Uz T, Manev H. Opposite effects of pinealectomy and melatonin administration on brain damage following cerebral focal ischemia in rat. Restor Neurol Neurosci. 1998;13:185–91.

    CAS  PubMed  Google Scholar 

  72. Tang YP, Ma YL, Chao CC, et al. Enhanced glial cell line-derived neurotrophic factor mRNA expression upon (−)-deprenyl and melatonin treatments. J Neurosci Res. 1998;53:593–604.

    CAS  PubMed  Google Scholar 

  73. Anhe GF, Caperuto LC, Pereira-Da-Silva M, et al. In vivo activation of insulin receptor tyrosine kinase by melatonin in the rat hypothalamus. J Neurochem. 2004;90:559–66.

    CAS  PubMed  Google Scholar 

  74. Henshall DC, Araki T, Schindler CK, et al. Activation of Bcl-2-associated death protein and counter-response of Akt within cell populations during seizure-induced neuronal death. J Neurosci. 2002;22:8458–65.

    CAS  PubMed  Google Scholar 

  75. Kim AH, Yano H, Cho H, et al. Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron. 2002;35:697–709.

    CAS  PubMed  Google Scholar 

  76. Rodriguez C, Mayo JC, Sainz RM, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36:1–9.

    CAS  PubMed  Google Scholar 

  77. Giusti P, Gusella M, Lipartiti M, Milani D, Zhu W, Vicini S, Manev H. Melatonin protects primary cultures of cerebellar granule neurons from kainate but not from N-methyl-D aspartate excitotoxicity. Exp Neurol. 1995;133:39–46.

    Google Scholar 

  78. Cho S, Joh TH, Baik HH, Dibinis C, Volpe BT. Melatonin administration protects CA1 hippocampal neurons after transient forebrain ischemia in rats. Brain Res. 1997;755:335–8.

    CAS  PubMed  Google Scholar 

  79. Uz T, Giusti P, Franceschini D, Kharlamov A, Manev H. Protective effect of melatonin against hippocampal DNA damage induced by intraperitoneal administration of kainate to rats. Neuroscience. 1996;73:631–6.

    CAS  PubMed  Google Scholar 

  80. Mukherjee R, Desai F, Singh S, Gajaria T, Singh PK, Baxi DB, Sharma D, Bhatnagar M, Ramachandran AV. Melatonin protects against alterations in hippocampal cholinergic system, trace metals and oxidative stress induced by gestational and lactational exposure to cadmium. EXCLI J. 2010;9:119–32.

    Google Scholar 

  81. Lin AMY, Fang SF, Chao PL, et al. Melatonin attenuates arsenite-induced apoptosis in rat brain: involvement of mitochondrial and ER pathways and aggregation of a-synuclein. J Pineal Res. 2007;43:163–71.

    CAS  PubMed  Google Scholar 

  82. Wang X. The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther. 2009;15:345–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Harms C, Lautenschlager M, Bergk A, et al. Melatonin is protective in necrotic but not in caspase-dependent, free radical-independent apoptotic neuronal cell death in primary neuronal cultures. FASEB J. 2000;14:1814–24.

    CAS  PubMed  Google Scholar 

  84. Camins A, Sureda FX, Junyent F, et al. An overview of investigational antiapoptotic drugs with potential application for the treatment of neurodegenerative disorders. Expert Opin Investig Drugs. 2010;19:587–604.

    CAS  PubMed  Google Scholar 

  85. Guo Y, Wang J, Wang Z, et al. Melatonin protects N2 a against ischemia/reperfusion injury through autophagy enhancement. J Huazhong Univ Sci Technolog Med Sci. 2010;30:1–7.

    CAS  PubMed  Google Scholar 

  86. Nopparat C, Porter J, Ebadi M, et al. The mechanism for the neuroprotective effect of melatonin against methamphetamine induced autophagy. J Pineal Res. 2010;49:382–9.

    CAS  PubMed  Google Scholar 

  87. Kempermann G, Krebs J, Fabel K. The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr Opin Psychiatry. 2008;21:290–5.

    PubMed  Google Scholar 

  88. Duman RS. Depression: a case of neuronal life and death? Biol Psychiatry. 2004;56:140–5.

    PubMed  Google Scholar 

  89. Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci. 2007;10:1110–5.

    CAS  PubMed  Google Scholar 

  90. Holmes A, Yang RJ, Murphy DL, Crawley JN. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology. 2002;27:914–23.

    CAS  PubMed  Google Scholar 

  91. Mueller AD, Pollock MS, Lieblich SE, Epp JR, Galea LA, Mistlberger RE. Sleep deprivation can inhibit adult hippocampal neurogenesis independent of adrenal stress hormones. Am J Physiol Regul Integr Comp Physiol. 2008;294:1693–703.

    Google Scholar 

  92. Moriya T, Horie N, Mitome M, Shinohara K. Melatonin influences the proliferative and differentiative activity of neural stem cells. J Pineal Res. 2007;42:411–8.

    CAS  PubMed  Google Scholar 

  93. Kong X, Li X, Cai Z, Yang N, Liu Y, Shu J, et al. Melatonin regulates the viability and differentiation of rat midbrain neural stem cells. Cell Mol Neurobiol. 2008;28:569–79.

    CAS  PubMed  Google Scholar 

  94. Collins DR, Davies SN. Melatonin blocks the induction of long term potentiation in an N-methyl-D-aspartate independent manner. Brain Res. 1997;767:162–5.

    CAS  PubMed  Google Scholar 

  95. El-Sherif Y, Tesoriero J, Hogan MV, Wieraszko A. Melatonin regulates neuronal plasticity in the hippocampus. J Neurosci Res. 2003;72:454–60.

    CAS  PubMed  Google Scholar 

  96. Nonno R, Lucini V, Stankov B, Fraschini F. 2-[125I] Iodomelatonin binding sites in the bovine hippocampus are not sensitive to guanine nucleotides. Neurosci Lett. 1995;194:113–6.

    CAS  PubMed  Google Scholar 

  97. Reppert SM, Godson C, Mahle CD, et al. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the mellb melatonin receptor. Proc Natl Acad Sci U S A. 1995;92:8734–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Mazzuchelli C, Pannacci M, Nonno R, Lucini V, Fraschini F, Stankov BM. The melatonin receptor in the human brain: cloning experiments and distribution studies. Mol Brain Res. 1996;39:117–26.

    Google Scholar 

  99. Reppert SM. Melatonin receptors: molecular biology of a new family of G protein-coupled receptors. J Biol Rhythms. 1997;12:528–31.

    CAS  PubMed  Google Scholar 

  100. Wan Q, Man H-Y, Liu F, Braunton J, Niznik HB, Pang SF, Brown GM, Wang YT. Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors. Nat Neurosci. 1999;2:401–3.

    CAS  PubMed  Google Scholar 

  101. Nosjean O, Nicolas JP, Klupsch F, Delagrange P, Canet E, Boutin JA. Comparative pharmacological studies of melatonin receptors: MT1, MT2 and MT3/QR2. Tissue distribution of MT3/QR2. Biochem Pharmacol. 2001;61:1369–79.

    CAS  PubMed  Google Scholar 

  102. Von Gall C, Stehle JH, Weaver DR. Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res. 2002;309:151–62.

    Google Scholar 

  103. Reppert SM, Weaver DR, Ebisawa T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron. 1994;13:1177–85.

    CAS  PubMed  Google Scholar 

  104. Musshoff U, Riewenherm D, Berger E, Fauteck J-D, Speckmann E-J. Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus. 2002;12:165–75.

    CAS  PubMed  Google Scholar 

  105. Nadel L. The hippocampus and space revisited. Hippocampus. 1991;1:221–9.

    CAS  PubMed  Google Scholar 

  106. Eichenbaum H. The hippocampal system and declarative memory in animals. J Cogn Neurosci. 1992;4:217–31.

    CAS  PubMed  Google Scholar 

  107. Zeise ML, Semm P. Melatonin lowers excitability of guinea pig hippocampal neurons in vitro. J Comp Physiol A. 1985;157:23–9.

    CAS  PubMed  Google Scholar 

  108. Halliwell B, Gutteridge JM. Free radicals in biology and medicine, vol. 3. Oxford: Oxford University Press; 1999. p. 1–543.

    Google Scholar 

  109. Pei Z, Pang SF, Cheung RT. Administration of melatonin after onset of ischemia reduces the volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. Stroke. 2003;34:770–5.

    CAS  PubMed  Google Scholar 

  110. Jain A. In vitro and In vivo study of neuroprotective properties of melatonin. PhD thesis. Udaipur: Mohanlal Sukhadia University; 2009.

    Google Scholar 

  111. Reiter RJ, Manda K. Melatonin maintains adult hippocampal neurogenesis and cognitive functions after irradiation. Prog Neurobiol. 2010;90(1):60–8.

    PubMed  Google Scholar 

  112. Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull. 1993;49(3):481–93.

    CAS  PubMed  Google Scholar 

  113. Marklund SL, Westman NG, Lundgren E, Roos G. Copper-and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res. 1982;42(5):1955–61.

    CAS  PubMed  Google Scholar 

  114. Martilla RJ, Roytta M, Lorentz H, Rinne UK. Oxygen toxicity protecting enzymes in human brain. J Neural Transm. 1988;74:87–90.

    Google Scholar 

  115. Benzi G, Moretti A. Are reactive oxygen species involved in Alzheimer’s disease? Neurobiol Aging. 1995;16(4):661–74.

    CAS  PubMed  Google Scholar 

  116. Joseph JA, Villalobos-Molina R, Yamagami K, Roth GS, Kelly J. Age-specific alterations in muscarinic stimulation of K(+)-evoked dopamine release from striatal slices by cholesterol and S-adenosyl-L-methionine. Brain Res. 1995;673(2):185–93.

    CAS  PubMed  Google Scholar 

  117. Bhatnagar M, Sharma D, Salvi M. Neuroprotective effects of Withania somnifera dunal. A possible mechanism. Neurochem Res. 2009;34(11):1975–83.

    CAS  PubMed  Google Scholar 

  118. Das A, McDowell M, Pava MJ, Smith JA, Reiter RJ, Woodward JJ, Varma AK, Ray SK, Banik NL. The inhibition of apoptosis by melatonin in VSC4.1 motoneurons exposed to oxidative stress, glutamate excitotoxicity, or TNF‐α toxicity involves membrane melatonin receptors. J Pineal Res. 2010;48(2):157–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Kim JE, Choi HC, Song HK, Jo SM, Kim DS, Choi SY, Kang TC. Levetiracetam inhibits interleukin-1β inflammatory responses in the hippocampus and piriform cortex of epileptic rats. Neurosci Lett. 2010;471(2):94–9.

    CAS  PubMed  Google Scholar 

  120. Chen JC, Ng CJ, Chiu TF, et al. Altered neutrophil apoptosis activity is reversed by melatonin in liver ischemia–reperfusion. J Pineal Res. 2003;34:260–4.

    CAS  PubMed  Google Scholar 

  121. Bardgett ME, Henry JD. Locomotor activity and accumbens Fos expression driven by ventral hippocampal stimulation require D1 and D2 receptors. Neuroscience. 1999;94(1):59.

    CAS  PubMed  Google Scholar 

  122. Culmsee C, Bondada S, Mattson MP. Hippocampal neurons of mice deficient in DNA-dependent protein kinase exhibit increased vulnerability to DNA damage, oxidative stress and excitotoxicity. Mol Brain Res. 2001;87(2):257–62.

    CAS  PubMed  Google Scholar 

  123. Suzuki WA, Clayton NS. The hippocampus and memory: a comparative and ethological perspective. Curr Opin Neurobiol. 2000;10(6):768–73.

    CAS  PubMed  Google Scholar 

  124. Zafra F, Castrén E, Thoenen H, Lindholm D. Interplay between glutamate and γ-aminobutyric acid transmitter systems in the regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons. Proc Natl Acad Sci U S A. 1991;88:10037–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Akhlaq AF, Wei Y, Xin-Rong L, Barry H, Llyod AH. Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. 2001;38:61–78.

    Google Scholar 

  126. Benesova P, Langmeier M, Betka J, Trojan S. Long-lasting changes in the density of nitrergic neurons following kainic acid administration and chronic hypoxia. Physiol Res. 2005;54:565–71.

    CAS  PubMed  Google Scholar 

  127. White BC, Sullivan JM, Degracia DJ, Oneil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci. 2000;179:1–33.

    CAS  PubMed  Google Scholar 

  128. Montecot C, Borredon J, Seylaz J, Pinard E. Nitric oxide of neuronal origin is involved in cerebral blood flow increase during seizures induced by kainate. J Cereb Blood Flow Metab. 1997;17:94–9.

    CAS  PubMed  Google Scholar 

  129. Benesova P, Langmeier M, Betka J, Trojan S. Changes in the number of nitrergic neurons following kainic acid administration and repeated long-term hypoxia. Physiol Res. 2004;53:343–9.

    CAS  PubMed  Google Scholar 

  130. Jain A, Bhatnagar M. Melatonin–a “magic biomolecule”. Ann Neurosci. 2010;14(4):108–14.

    Google Scholar 

  131. Tapias V, Escames G, López LC, López A, Camacho E, Carrión MD, Entrena A, Gallo MA, Espinosa A, Acuna-Castroviejo D. Melatonin and its brain metabolite N(1)-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian mice. J Neurosci Res. 2009;13:3002–10.

    Google Scholar 

  132. Chung SY, Han SH. Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. J Pineal Res. 2003;34:95–102.

    CAS  PubMed  Google Scholar 

  133. Moreno N, López JM, Sánchez-Camacho C, González A. Development of NADPH-diaphorase/nitric oxide synthase in the brain of the urodele amphibian Pleurodeles waltl. J Chem Neuroanat. 2002;23:105–21.

    CAS  PubMed  Google Scholar 

  134. Ben-Ari Y, Cossart R. Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci. 2000;23:580–7.

    CAS  PubMed  Google Scholar 

  135. Langmeier MJ, Folbergrova J, Haugvicova R, Riljak V. Neuronal cell death in hippocampus induced by homocysteic acid in immature rats. Epilepsia. 2003;44:299–304.

    CAS  PubMed  Google Scholar 

  136. Wojtal K, Gniatkowska-Nowakowska A, Czuczwar SJ. Is nitric oxide involved in the anticonvulsant action of antiepileptic drugs? Pol J Pharmacol. 2003;55:535–42.

    CAS  PubMed  Google Scholar 

  137. Kotler M, Rodriguez C, Sainz RM, Antolin I, Menéndez-Peláez A. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res. 1998;24:83–9.

    CAS  PubMed  Google Scholar 

  138. Chang HM, Liao WC, Lue JH, Wen CY, Shieh JY. Upregulation of NMDA receptor and neuronal NADPH-d/NOS expression in the nodose ganglion of acute hypoxic rats. J Chem Neuroanat. 2003;25:137–47.

    CAS  PubMed  Google Scholar 

  139. Tan DX, Manchester LC, Sainz RM, Mayo JC, Alvares FL, Reiter RJ. Antioxidant strategies in protection against neurodegenerative disorders. Curr Opin Ther Patents. 2003;13:1513–43.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Suhalka PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Suhalka, P. et al. (2014). Melatonin’s Neuroprotective Actions on Hippocampal Neurons. In: Srinivasan, V., Brzezinski, A., Oter, S., Shillcutt, S. (eds) Melatonin and Melatonergic Drugs in Clinical Practice. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0825-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0825-9_25

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0824-2

  • Online ISBN: 978-81-322-0825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics