Skip to main content
Log in

Mechanisms of Neurocognitive Adaptation during Aging Process

  • REVIEWS
  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Human aging is associated with an increased risk of various geriatric syndromes, cognitive impairment being among the most frequent. The most prominent form of the cognitive impairment—dementia—has become one of the major course of dependency in older and oldest old patients. Nevertheless, it has been shown that despite the fact that various parts of the brain change structurally over time due to natural aging or diseases, it does not necessarily manifest into clinical symptoms for some older people. Therefore, there is a dissociation of the severity of morphological and functional brain changes. The review presents current data on adaptive mechanisms that ensure the preservation of neurocognitive activity during aging process. In addition to the concept of brain and cognitive reserves, it discusses different mechanisms of neurocognitive maintenance and compensation both in the norm and in the development of Alzheimer’s disease. The possibility of their clinical and instrumental assessment and practical significance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Blinkouskaya, Y., Caçoilo, A., Gollamudi, T., Jalalian, S., and Weickenmeier, J., Brain aging mechanisms with mechanical manifestations, Mech. Ageing Dev., 2021, vol. 200, p. 111575.https://doi.org/10.1016/j.mad.2021.111575

  2. Bogolepova, A.N., Vasenina, E.E., Gomzyakova, N.A., Gusev, E.I., Dudchenko, N.G., Emelin, A.Yu., Zalutskaya, N.M., Isaev, R.I., Kotovskaya, Yu.V., Levin, O.S., Litvinenko, I.V., Lobzin, V.Yu., Martynov, M.Yu., Mkhitaryan, E.A., Neznanov, N.G., Palchikova, E.I., Tkacheva, O.N., Cherdak, M.A., Chimagomedova, A.Sh., and Yakhno, N.N., Clinical guidelines for cognitive disorders in elderly and older patients, Zh. Nevr. Psikhiatr. im. S.S. Korsakova, 2021, vol. 121, no. 10–3, pp. 6–137. https://doi.org/10.17116/jnevro20211211036

  3. Salthouse, T.A., Trajectories of normal cognitive aging, Psychol. Aging, 2019, vol. 34, no. 1, pp. 17–24. https://doi.org/10.1037/pag0000288

    Article  PubMed  Google Scholar 

  4. Beker, N., Ganz, A., Hulsman, M., Klausch, T., Schmand, B.A., Scheltens, P., Sikkes, S.A.M., and Holstege, H., Association of cognitive function trajectories in centenarians with postmortem neuropathology, physical health, and other risk factors for cognitive decline, JAMA Netw. Open, 2021, vol. 4, no. 1, p. e2031654. https://doi.org/10.1001/jamanetworkopen.2020.31654

    Article  PubMed  PubMed Central  Google Scholar 

  5. Satz, P., Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theory, Neuropsychology, 1993, vol. 7, no. 3, pp. 273–295.

  6. Stern, Y., Barnes, C.A., Grady, C., Jones, R.N., and Raz, N., Brain reserve, cognitive reserve, compensation, and maintenance: Operationalization, validity, and mechanisms of cognitive resilience. Neurobiol. Aging, 2019, vol. 83, pp. 124–129.https://doi.org/10.1016/j.neurobiolaging.2019.03.022

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koberskaya, N.N. and Tabeea, G.R., The modern concept of cognitive reserve, in Nevrologiya, neiropsikhiatriya, psikhosomatika, 2019, vol. 11, no. 1, pp. 96–102. https://doi.org/10.14412/2074‑2711‑2019‑1‑96‑102

  8. Caspi, Y., Brouwer, R.M., Schnack, H.G., van de Nieuwenhuijzen, M.E., Cahn, W., Kahn, R.S., Niessen, W.J., van der Lugt, A., and Pol, H.H., Changes in the intracranial volume from early adulthood to the sixth decade of life: A longitudinal study, Neuroimage, 2020, vol. 220, p. 116842. https://doi.org/10.1016/j.neuroimage.2020.116842

    Article  PubMed  Google Scholar 

  9. de Rooij, S.R., Are brain and cognitive reserve shaped by early life circumstances?, Front. Neurosci., 2022, vol. 16, p. 825811. https://doi.org/10.3389/fnins.2022.825811

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gluckman, P.D., Hanson, M.A., Morton, S.M., and Pinal, C.S., Life-long echoesa critical analysis of the developmental origins of adult disease model, Biol. Neonate., 2005, vol. 87, no. 2, pp. 127–139. https://doi.org/10.1159/000082311

    Article  PubMed  Google Scholar 

  11. Raikkonen, K., Kajantie, E., Pesonen, A.K., Heinonen, K., Alastalo, H., Leskinen, J.T., Nyman, K., Henriksson, M., Lahti, J., Lahti, M., Pyhälä, R., Tuovinen, S., Osmond, C., Barker, D.J., and Eriksson, J.G., Early life origins cognitive decline: Findings in elderly men in the Helsinki Birth Cohort Study, PLoS One, 2013, vol. 8, no. 1, p. e54707. https://doi.org/10.1371/journal.pone.0054707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gould, E., Reeves, A.J., Graziano, M.S., and Gross, C.G., Neurogenesis in the neocortex of adult primates, Science, 1999, vol. 286, no. 5439, pp. 548–552. https://doi.org/10.1126/science.286.5439.548

    Article  CAS  PubMed  Google Scholar 

  13. Maccora, J., Peters, R., and Anstey, K.J., What does (low) education mean in terms of dementia risk? A systematic review and meta-analysis highlighting inconsistency in measuring and operationalising education, SSM Popul. Health, 2020, vol. 12, p. 100654. https://doi.org/10.1016/j.ssmph.2020.100654

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tani, Y., Fujiwara, T., and Kondo, K., Association between adverse childhood experiences and dementia in older Japanese adults, JAMA Netw. Open, 2020, vol. 3, no. 2, p. e1920740. https://doi.org/10.1001/jamanetworkopen.2019.20740

    Article  Google Scholar 

  15. Lundgren, E.M. and Tuvemo, T., Effects of being born small for gestational age on long-term intellectual performance, Best Pract. Res. Clin. Endocrinol. Metab., 2008, vol. 22, no. 3, pp. 477–488. https://doi.org/10.1016/j.beem.2008.01.014

    Article  PubMed  Google Scholar 

  16. Solé-Padullés, C., Bartrés-Faz, D., Junqué, C., Vendrell, P., Rami, L., Clemente, I.C., Bosch, B., Villar, A., Bargalló, N., Jurado, M.A., Barrios, M., and Molinuevo, J.L., Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease, Neurobiol. Aging, 2009, vol. 30, no. 7, pp. 1114–1124. https://doi.org/10.1016/j.neurobiolaging.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  17. Piras, F., Cherubini, A., Caltagirone, C., and Spalletta, G., Education mediates microstructural changes in bilateral hippocampus, Hum. Brain Map., 2011, vol. 32, no. 2. pp. 282–289. https://doi.org/10.1002/hbm.21018

    Article  Google Scholar 

  18. Zijlmans, J.L., Lamballais, S., Lahousse, L., Vernooij, M.W., Ikram, M.K., Ikram, M.A., and Luik, A.I., The interaction of cognitive and brain reserve with frailty in the association with mortality: An observational cohort study, Lancet Healthy Longev., 2021, vol. 2, no. 4, pp. e194–e201. https://doi.org/10.1016/S2666-7568(21)00028-3

    Article  PubMed  Google Scholar 

  19. Nogueira, J., Gerardo, B., Santana, I., Simões, M.R., and Freitas, S., The assessment of cognitive reserve: A systematic review of the most used quantitative measurement methods of cognitive reserve for aging, Front. Psychol., 2022, vol. 13, p. 847186. https://doi.org/10.3389/fpsyg.2022.847186

    Article  PubMed  PubMed Central  Google Scholar 

  20. Petersen, R.C., Lopez, O., Armstrong, M.J., Getchius, T.S.D., Ganguli, M., Gloss, D., Gronseth, G.S., Marson, D., Pringsheim, T., Day, G.S., Sager, M., Stevens, J., and Rae-Grant, A., Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation subcommittee of the American Academy of Neurology, Neurology, 2018, vol. 90, no. 3, pp. 126–135. https://doi.org/10.1212/WNL.0000000000004826

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cabeza, R., Albert, M., Belleville, S., Craik, F.I.M., Duarte, A., Grady, C.L., Lindenberger, U., Nyberg, L., Park, D.C., Reuter-Lorenz, P.A., Rugg, M.D., Steffener, J., and Rajah, M.N., Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci., 2018, vol. 19, no. 11, pp. 701–710. https://doi.org/10.1038/s41583-018-0068-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., and Bäckman, L., Memory aging and brain maintenance, Trends Cogn. Sci., 2012, vol. 16, no. 5, pp. 292–305. https://doi.org/10.1016/j.tics.2012.04.005

    Article  PubMed  Google Scholar 

  23. Raz, N. and Lindenberger, U., Only time will tell: Cross-sectional studies offer no solution to the age–brain–cognition triangle: Comment on Salthouse (2011), Psychol. Bull., 2011, vol. 137, no. 5, pp. 790–795. https://doi.org/10.1037/a0024503

    Article  PubMed  PubMed Central  Google Scholar 

  24. Collaboratory on Research Definitions for Cognitive Reserve and Resilience. https://reserveandresilience.com/. Cited on June 24, 2023.

  25. Nucci, M., Mapelli, D., and Mondini, S., Cognitive Reserve Index questionnaire (CRIq): A new instrument for measuring cognitive reserve, Aging Clin. Exp. Res., 2012, vol. 24, no. 3, pp. 218–226. https://doi.org/10.3275/7800

    Article  PubMed  Google Scholar 

  26. Rami, L., Valls-Pedret, C., Bartrés-Faz, D., Caprile, C., Sole-Padulles, C., Castellvi, M., Olives, J., Bosch, B., and Molinuevo, J.L., Cognitive reserve questionnaire. Scores obtained in a healthy elderly population and in one with Alzheimer’s disease, Rev. Neurol., 2011, vol. 52, no. 4, pp. 195–201. https://doi.org/10.33588/rn.5204.2010478

    Article  PubMed  Google Scholar 

  27. Valenzuela, M.J. and Sachdev, P., Assessment of complex mental activity across the lifespan: Development of the Lifetime of Experiences Questionnaire (LEQ), Psychol. Med., 2007, vol. 37, no. 7, pp. 1015–1025. https://doi.org/10.1017/S003329170600938X

    Article  PubMed  Google Scholar 

  28. Relander, K., Mäki, K., Soinne, L., García-García, J., and Hietanen, M., Active lifestyle as a reflection of cognitive reserve: The Modified Cognitive Reserve Scale, Nordic Psychology, 2021, vol. 73, no. 3, pp. 242–252. https://doi.org/10.1080/19012276.2021.1902846

    Article  Google Scholar 

  29. Amoretti, S., Cabrera, B., Torrent, C., Bonnín, C.D.M., Mezquida, G., Garriga, M., Jimenéz, E., Martínez-Arán, A., Solé, B., Reinares, M., Varo, C., Penades, R., Grande, I., Salagre, E., Parellada, E., Bioque, M., Garcia-Rizo, C., Meseguer, A., Anmella, G., Rosa, A.R., Contreras, F., Safont, G., Vieta, E., and Bernardo, M., Cognitive Reserve Assessment Scale in Health (CRASH): Its validity and reliability, J. Clin. Med., 2019, vol. 8, no. 5, p. 586. https://doi.org/10.3390/jcm8050586

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jack, C.R., Jr., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., Holtzman, D.M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J.L., Montine, T., Phelps, C., Rankin, K.P., Rowe, C.C., Scheltens, P., Siemers, E., Snyder, H.M., and Sperling, R., Contributors. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease, Alzheimers Dement., 2018, vol. 14, no. 4, pp. 535–562. https://doi.org/10.1016/j.jalz.2018.02.018

    Article  PubMed  Google Scholar 

  31. Lee, D.H., Seo, S.W., Roh, J.H., Oh, M., Oh, J.S., Oh, S.J., Kim, J.S., and Jeong, Y., Effects of cognitive reserve in Alzheimer’s disease and cognitively unimpaired individuals, Front. Aging Neurosci., 2022, vol. 13, p. 784054. https://doi.org/10.3389/fnagi.2021.784054

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nelson, M.E., Jester, D.J., Petkus, A.J., and Andel, R., Cognitive reserve, Alzheimer’s neuropathology, and risk of dementia: A systematic review and meta-analysis, Neuropsychol. Rev., 2021, vol. 31, no. 2, pp. 233–250. https://doi.org/10.1007/s11065-021-09478-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Cherdak.

Ethics declarations

CONFLICT OF INTEREST

The author of this work declare that she has no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by L. Solovyova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherdak, M.A. Mechanisms of Neurocognitive Adaptation during Aging Process. Adv Gerontol 13, 123–129 (2023). https://doi.org/10.1134/S2079057024600204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057024600204

Keywords:

Navigation