Skip to main content
Log in

Comparative Analysis of Cell Senescence Induced by the Chemotherapeutic Agents Doxorubicin, Cisplatin and Arsenic Trioxide in Human Myoblasts MB135

  • RESEARCH ARTICLES
  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Genotoxic and cytotoxic drugs, widely used in anticancer therapy, target proliferating cells and induce cell death through a variety of cell cycle-dependent mechanisms. The mechanisms of the delayed toxicity induced by chemotherapy are not fully understood. The accumulation of senescent cells may underlie some of the mechanisms for the development of late adverse effects of chemotherapy on muscle tissue. Cellular models are necessary for the development of therapeutic approaches to these side effects. In our study we used human immortalized myoblast MB135 to optimize the protocol for obtaining the senescent phenotype of muscle cells under the influence of chemotherapeutic drugs such as doxorubicin, cisplatin and arsenic trioxide (As2O3). We evaluated the dynamics of changes in senescence proteins pRb, p21 and p53 and SASP-associated proteins such as TNF, IL-1b, IL-6, IL-8, CXCL2, GDF15 using Western blot, RT-PCR and ELISA. Cell senescence was confirmed by the measurement of cell senescence index by flow cytometry after 7 days of exposure to chemotherapeutic agents. The obtained results indicate that all three investigated chemotherapeutic compounds induce the appearance of senescence markers, but the dynamics of these changes are somewhat different for them, which may reflect differences in the mechanisms of senescence phenotype induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Schünemann, M., Anker, S.D., and Rauchhaus, M., Cancer fatigue syndrome reflects clinically non-overt heart failure: An approach towards onco-cardiology, Nat. Clin. Pract. Oncol., 2008, vol. 5, no. 11, pp. 632–633.

    Article  PubMed  Google Scholar 

  2. Hudson, M.M., Ness, K.K., Gurney, J.G., Mulrooney, D.A., Chemaitilly, W., Krull, K.R., Green, D.M., Armstrong, G.T., Nottage, K.A., Jones, K.E., Sklar, C.A., Srivastava, D.K., and Robison, L.L., Clinical ascertainment of health outcomes among adults treated for childhood cancer, J. Am. Med. Assoc., 2013, vol. 309, no. 22, pp. 2371–2381.

    Article  CAS  Google Scholar 

  3. Chen, M.S., Lee, R.T., and Garbern, J.C., Senescence mechanisms and targets in the heart, Cardiovasc. Res., 2022, vol. 118, no. 5, pp. 1173–1187.

    Article  CAS  PubMed  Google Scholar 

  4. Mehdizadeh, M., Aguilar, M., Thorin, E., Ferbeyre, G., and Nattel, S., The role of cellular senescence in cardiac disease: Basic biology and clinical relevance, Nat. Rev. Cardiol., 2022, vol. 19, no. 4, pp. 250–264.

    Article  PubMed  Google Scholar 

  5. Vizioli, M.G., Liu, T., Miller, K.N., Robertson, N.A., Gilroy, K., Lagnado, A.B., Perez-Garcia, A., Kiourtis, C., Dasgupta, N., Lei, X., Kruger, P.J., Nixon, C., Clark, W., Jurk, D., Bird, T.G., Passos, J.F., Berger, S.L., Dou, Z., and Adams, P.D., Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence, Genes Dev., 2020, vol. 34, nos. 5–6, pp. 428–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh, P., Sharma, R., McElhanon, K., Allen, C.D., Megyesi, J.K., Benes, H., and Singh, S.P., Sulforaphane protects the heart from doxorubicin-induced toxicity, Free Radic. Biol. Med., 2015, vol. 86, pp. 90–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hiensch, A.E., Bolam, K.A., Mijwel, S., Jeneson, J.A.L., Huitema, A.D.R., Kranenburg, O., van der Wall, E., Rundqvist, H., Wengstrom, Y., and May, A.M., Doxorubicin-induced skeletal muscle atrophy: Elucidating the underlying molecular pathways, Acta Physiol., 2020, vol. 229, no. 2, р. e13400.

  8. Dugbartey, G.J., Peppone, L.J., and de Graaf, I.A.M., An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures, Toxicology, 2016, vol. 371, pp. 58–66.

    Article  CAS  PubMed  Google Scholar 

  9. Conte, E., Bresciani, E., Rizzi, L., Cappellari, O., De Luca, A., Torsello, A., and Liantonio, A., Cisplatin-induced skeletal muscle dysfunction: Mechanisms and counteracting therapeutic strategies, Int. J. Mol. Sci., 2020, vol. 21, no. 4, p. 1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andreou, C. and Matsakas, A., Current insights into cellular senescence and myotoxicity induced by doxorubicin: The role of exercise and growth factors, Int. J. Sports Med., 2022, vol. 43, no. 13, pp. 1084–1096.

    Article  PubMed  Google Scholar 

  11. Echaniz-Laguna, A., Benoilid, A., Vinzio, S., Fornecker, L.M., Lannes, B., Goullé, J.P., Broly, F., and de Camaret, B., Mitochondrial myopathy caused by arsenic trioxide therapy, Blood, 2012, vol. 119, no. 18, pp. 4272–4274.

    Article  CAS  PubMed  Google Scholar 

  12. Yen, Y.P., Tsai, K.S., Chen, Y.W., Huang, C.F., Yang, R.S., and Liu, S.H., Arsenic inhibits myogenic differentiation and muscle regeneration, Environ. Health Perspect., 2010, vol. 118, no. 7, pp. 949–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Piegari, E., De Angelis, A., Cappetta, D., Russo, R., Esposito, G., Costantino, S., Graiani, G., Frati, C., Prezioso, L., Berrino, L., Urbanek, K., Quaini, F., and Rossi, F., Doxorubicin induces senescence and impairs function of human cardiac progenitor cells, Basic Res. Cardiol., 2013, vol. 108, no. 2, p. 334.

    Article  PubMed  Google Scholar 

  14. Demaria, M., O’Leary, M.N., Chang, J., Shao, L., Liu, S., Alimirah, F., Koenig, K., Le, C., Mitin, N., Deal, A.M., Alston, S., Academia, E.C., Kilmarx, S., Valdovinos, A., Wang, B., de Bruin, A., Kennedy, B.K., Melov, S., Zhou, D., Sharpless, N.E., Muss, H., and Campisi, J., Cellular senescence promotes adverse effects of chemotherapy and cancer relapse, Cancer Discov., 2017, vol. 7, no. 2, pp. 165–176.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, B., Kohli, J., and Demaria, M., Senescent cells in cancer therapy: Friends or foes?, Trends Cancer Res., 2020, vol. 6, no. 10, pp. 838–857.

    Article  CAS  Google Scholar 

  16. Jagannathan, S., Shadle, S.C., Resnick, R., Snider, L., Tawil, R.N., van der Maarel, S.M., Bradley, R.K., and Tapscott, S.J., Model systems of DUX4 expression recapitulate the transcriptional profile of FSHD cells, Hum. Mol. Genet., 2016, vol. 25, no. 20, pp. 4419–4431.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Malavolta, M., Giacconi, R., Piacenza, F., Strizzi, S., Cardelli, M., Bigossi, G., Marcozzi, S., Tiano, L., Marcheggiani, F., Matacchione, G., Giuliani, A., Olivieri, F., Crivellari, I., Beltrami, A.P., Serra, A., Demaria, M., and Provinciali, M., Simple detection of unstained live senescent cells with imaging flow cytometry, Cells, 2022, vol. 11, no. 16, р. 2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brookes, S., Gagrica, S., Sanij, E., Rowe, J., Gregory, F.J., Hara, E., and Peters, G., Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence, Cell Cycle, 2015, vol. 14, no. 8, pp. 1164–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao, Y., Wu, T., Tang, X., Wen, J., Zhang, Y., Zhang, J., and Wang, S., Increased cellular senescence in doxorubicin-induced murine ovarian injury: Effect of senolytics, Geroscience, 2023, vol. 45, no. 3, pp. 1775–1790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Efferth, T., Konkimalla, V.B., Wang, Y.F., Sauerbrey, A., Meinhardt, S., Zintl, F., Mattern, J., and Volm, M., Prediction of broad spectrum resistance of tumors towards anticancer drugs, Clin. Cancer Res., 2008, vol. 14, no. 8, pp. 2405–2412.

    Article  CAS  PubMed  Google Scholar 

  21. Jurisicova, A., Lee, H.J., D’Estaing, S.G., Tilly, J., and Perez, G.I., Molecular requirements for doxorubicin-mediated death in murine oocytes, Cell Death Differ., 2006, vol. 13, no. 9, pp. 1466–1474.

    Article  CAS  PubMed  Google Scholar 

  22. Morgan, S., Lopes, F., Gourley, C., Anderson, R.A., and Spears, N., Cisplatin and doxorubicin induce distinct mechanisms of ovarian follicle loss; imatinib provides selective protection only against cisplatin, PLoS One, 2013, vol. 8, no. 7, р. e70117.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez, V.M., Fuertes, M.A., Alonso, C., and Perez, J.M., Is cisplatin-induced cell death always produced by apoptosis?, Mol. Pharmacol., 2001, vol. 59, no. 4, pp. 657–663.

    Article  CAS  PubMed  Google Scholar 

  24. Frezza, M., Hindo, S., Chen, D., Davenport, A., Schmitt, S., Tomco, D., and Dou, Q.P., Novel metals and metal complexes as platforms for cancer therapy, Curr. Pharm. Des., 2010, vol. 16, no. 16, pp. 1813–1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matsumoto, C., Sekine, H., Zhang, N., Mogami, S., Fujitsuka, N., and Takeda, H., Role of p53 in cisplatin-induced myotube atrophy, Int. J. Mol. Sci., 2023, vol. 24, no. 11, р. 9176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou, L., Lu, R., Huang, C., and Lin, D., Taurine protects C2C12 myoblasts from impaired cell proliferation and myotube differentiation under cisplatin-induced ROS exposure, Front. Mol. Biosci., 2021, vol. 8, р. 685362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dawood, M., Hamdoun, S., and Efferth, T., Multifactorial modes of action of arsenic trioxide in cancer cells as analyzed by classical and network pharmacology, Front. Pharmacol., 2018, vol. 9, р. 143.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sugihara, H., Teramoto, N., Yamanouchi, K., Matsuwaki, T., and Nishihara, M., Oxidative stress-mediated senescence in mesenchymal progenitor cells causes the loss of their fibro/adipogenic potential and abrogates myoblast fusion, Aging, 2018, vol. 10, no. 4, pp. 747–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He, Y., Xie, W., Li, H., Jin, H., Zhang, Y., and Li, Y., Cellular senescence in sarcopenia: Possible mechanisms and therapeutic potential, Front. Cell Dev. Biol., 2021, vol. 9, р. 793088.

    Article  PubMed  Google Scholar 

  30. Campisi, J., Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors, Cell, 2005, vol. 120, no. 4, pp. 513–522.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by the Russian Science Foundation, project no. 23-14-00061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Chelombitko.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelombitko, M.A., Morgunova, G.V., Strochkova, N.Y. et al. Comparative Analysis of Cell Senescence Induced by the Chemotherapeutic Agents Doxorubicin, Cisplatin and Arsenic Trioxide in Human Myoblasts MB135. Adv Gerontol 13, 16–25 (2023). https://doi.org/10.1134/S2079057024600010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057024600010

Keywords:

Navigation