Skip to main content

Advertisement

Log in

Doxorubicin induces senescence and impairs function of human cardiac progenitor cells

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The increasing population of cancer survivors faces considerable morbidity and mortality due to late effects of the antineoplastic therapy. Cardiotoxicity is a major limiting factor of therapy with doxorubicin (DOXO), the most effective anthracycline, and is characterized by a dilated cardiomyopathy that can develop even years after treatment. Studies in animals have proposed the cardiac progenitor cells (CPCs) as the cellular target responsible for DOXO-induced cardiomyopathy but the relevance of these observations to clinical settings is unknown. In this study, the analysis of the DOXO-induced cardiomyopathic human hearts showed that the majority of human CPCs (hCPCs) was senescent. In isolated hCPCs, DOXO triggered DNA damage response leading to apoptosis early after exposure, and telomere shortening and senescence at later time interval. Functional properties of hCPCs, such as migration and differentiation, were also negatively affected. Importantly, the differentiated progeny of DOXO-treated hCPCs prematurely expressed the senescence marker p16INK4a. In conclusion, DOXO exposure severely affects the population of hCPCs and permanently impairs their function. Premature senescence of hCPCs and their progeny can be responsible for the decline in the regenerative capacity of the heart and may represent the cellular basis of DOXO-induced cardiomyopathy in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adamcová M, Potáčová A, Popelová O, Stěrba M, Mazurová Y, Aupperle H, Geršl V (2010) Cardiac remodeling and MMPs on the model of chronic daunorubicin-induced cardiomyopathy in rabbits. Physiol Res 59:831–836

    PubMed  Google Scholar 

  2. Ali MK, Ewer MS, Gibbs HR, Swafford J, Graff KL (1994) Late doxorubicin-associated cardiotoxicity in children. The possible role of intercurrent viral infection. Cancer 74:182–188. doi:10.1002/1097-0142(19940701)74:1<182:AID-CNCR2820740129>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  3. Arola OJ, Saraste A, Pulkki K, Kallajoki M, Parvinen M, Voipio-Pulkki LM (2000) Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res 60:1789–1792

    PubMed  CAS  Google Scholar 

  4. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073. doi:10.1073/pnas.0706760104

    Article  PubMed  CAS  Google Scholar 

  5. Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222. doi:10.1093/emboj/cdg417

    Article  PubMed  Google Scholar 

  6. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776. doi:10.1016/S0092-8674(03)00687-1

    Article  PubMed  CAS  Google Scholar 

  7. Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976. doi:10.1016/j.biocel.2004.10.013

    Article  PubMed  CAS  Google Scholar 

  8. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857. doi:10.1016/S0140-6736(11)61590-0

    Article  PubMed  Google Scholar 

  9. Buccini S, Haider KH, Ahmed RP, Jiang S, Ashraf M (2012) Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res Cardiol 107:301. doi:10.1007/s00395-012-0301-5

    Article  PubMed  Google Scholar 

  10. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbours. Cell 120:513–522. doi:10.1016/j.cell.2005.02.003

    Article  PubMed  CAS  Google Scholar 

  11. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740. doi:10.1038/nrm2233

    Article  PubMed  CAS  Google Scholar 

  12. Cesselli D, Beltrami AP, D’Aurizio F, Marcon P, Bergamin N, Toffoletto B, Pandolfi M, Puppato E, Marino L, Signore S, Livi U, Verardo R, Piazza S, Marchionni L, Fiorini C, Schneider C, Hosoda T, Rota M, Kajstura J, Anversa P, Beltrami CA, Leri A (2011) Effects of age and heart failure on human cardiac stem cell function. Am J Pathol 179:349–366. doi:10.1016/j.ajpath.2011.03.036

    Article  PubMed  CAS  Google Scholar 

  13. Chen MH, Colan SD, Diller L (2011) Cardiovascular disease: cause of morbidity and mortality in adult survivors of childhood cancers. Circ Res 108:619–628. doi:10.1161/CIRCRESAHA.110.224519

    Article  PubMed  CAS  Google Scholar 

  14. Chen QM, Liu J, Merrett JB (2000) Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J 347:543–551. doi:10.1042/0264-6021:3470543

    Article  PubMed  CAS  Google Scholar 

  15. Chimenti C, Kajstura J, Torella D, Urbanek K, Heleniak H, Colussi C, Di Meglio F, Nadal-Ginard B, Frustaci A, Leri A, Maseri A, Anversa P (2003) Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 93:604–613. doi:10.1161/01.RES.0000093985.76901.AF

    Article  PubMed  CAS  Google Scholar 

  16. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198. doi:10.1038/nature02118

    Article  PubMed  Google Scholar 

  17. D’Amario D, Cabral-Da-Silva MC, Zheng H, Fiorini C, Goichberg P, Steadman E, Ferreira-Martins J, Sanada F, Piccoli M, Cappetta D, D’Alessandro DA, Michler RE, Hosoda T, Anastasia L, Rota M, Leri A, Anversa P, Kajstura J (2011) Insulin-like growth factor-1 receptor identifies a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration. Circ Res 108:1467–1481. doi:10.1161/CIRCRESAHA.111.240648

    Article  PubMed  Google Scholar 

  18. De Angelis A, Piegari E, Cappetta D, Marino L, Filippelli A, Berrino L, Martins-Ferreira J, Zheng H, Hosoda T, Rota M, Urbanek K, Kajstura J, Leri A, Rossi F, Anversa P (2010) Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121:276–292. doi:10.1161/CIRCULATIONAHA.109.895771

    Article  PubMed  Google Scholar 

  19. Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB (2008) Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol 26:3777–3784. doi:10.1200/JCO.2007.14.9401

    Article  PubMed  Google Scholar 

  20. Gonzalez A, Rota M, Nurzynska D, Misao Y, Tillmanns J, Ojaimi C, Padin-Iruegas ME, Müller P, Esposito G, Bearzi C, Vitale S, Dawn B, Sanganalmath SK, Baker M, Hintze TH, Bolli R, Urbanek K, Hosoda T, Anversa P, Kajstura J, Leri A (2008) Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circ Res 102:597–606. doi:10.1161/CIRCRESAHA.107.165464

    Article  PubMed  CAS  Google Scholar 

  21. Green PS, Leeuwenburgh C (2002) Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochim Biophys Acta 1588:94–101. doi:10.1016/S0925-4439(02)00144-8

    Article  PubMed  CAS  Google Scholar 

  22. Hampel B, Malisan F, Niederegger H, Testi R, Jansen-Durr P (2004) Differential regulation of apoptotic cell death in senescent human cells. Exp Gerontol 39:1713–1721. doi:10.1016/j.exger.2004.05.010

    Article  PubMed  CAS  Google Scholar 

  23. Heusch G (2011) SCIPIO brings new momentum to cardiac cell therapy. Lancet 378:1827–1828. doi:10.1016/S0140-6736(11)61648-6

    Article  PubMed  Google Scholar 

  24. Huang C, Zhang X, Ramil JM, Rikka S, Kim L, Lee Y, Gude NA, Thistlethwaite PA, Sussman MA, Gottlieb RA, Gustafsson AB (2010) Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation 121:675–683. doi:10.1161/CIRCULATIONAHA.109.902221

    Article  PubMed  CAS  Google Scholar 

  25. Jang YM, Kendaiah S, Drew B, Phillips T, Selman C, Julian D, Leeuwenburgh C (2004) Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Lett 577:483–490. doi:10.1016/j.febslet.2004.10.053

    Article  PubMed  CAS  Google Scholar 

  26. Kajstura J, Gurusamy N, Ogórek B, Goichberg P, Clavo-Rondon C, Hosoda T, D’Amario D, Bardelli S, Beltrami AP, Cesselli D, Bussani R, del Monte F, Quaini F, Rota M, Beltrami CA, Buchholz BA, Leri A, Anversa P (2010) Myocyte turnover in the aging human heart. Circ Res 107:1374–1386. doi:10.1161/CIRCRESAHA.110.231498

    Article  PubMed  CAS  Google Scholar 

  27. Laurent G, Jaffrézou JP (2001) Signaling pathways activated by daunorubicin. Blood 98:913–924. doi:10.1182/blood.V98.4.913

    Article  PubMed  CAS  Google Scholar 

  28. Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416. doi:10.1152/physrev.00013.2005

    Article  PubMed  CAS  Google Scholar 

  29. Li Q, Guo Y, Ou Q, Chen N, Wu WJ, Yuan F, O’Brien E, Wang T, Luo L, Hunt GN, Zhu X, Bolli R (2011) Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models. Basic Res Cardiol 106:849–864. doi:10.1007/s00395-011-0180-1

    Article  PubMed  Google Scholar 

  30. Linke A, Müller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Böhm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102:8966–8971. doi:10.1073/pnas.0502678102

    Article  PubMed  CAS  Google Scholar 

  31. Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP (1991) Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 324:808–815. doi:10.1056/NEJM199103213241205

    Article  PubMed  CAS  Google Scholar 

  32. Malliaras K, Marbán E (2011) Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull 98:161–185. doi:10.1093/bmb/ldr018

    Article  PubMed  Google Scholar 

  33. Mariotto AB, Rowland JH, Yabroff KR, Scoppa S, Hachey M, Ries L, Feuer EJ (2009) Long-term survivors of childhood cancers in the United States. Cancer Epidemiol Biomark Prev 18:1033–1040. doi:10.1158/1055-9965.EPI-08-0988

    Article  Google Scholar 

  34. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229. doi:10.1124/pr.56.2.6

    Article  PubMed  CAS  Google Scholar 

  35. Nithipongvanitch R, Ittarat W, Cole MP, Tangpong J, Clair DK, Oberley TD (2007) Mitochondrial and nuclear p53 localization in cardiomyocytes: redox modulation by doxorubicin (Adriamycin)? Antioxid Redox Signal 9:1001–1008. doi:10.1089/ars.2007.1632

    Article  PubMed  CAS  Google Scholar 

  36. Pai VB, Nahata MC (2000) Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf 22:263–302. doi:10.2165/00002018-200022040-00002

    Article  PubMed  CAS  Google Scholar 

  37. Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R (2005) CD31- but not CD31 + cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61. doi:10.1161/01.RES.0000173297.53793.fa

    Article  PubMed  CAS  Google Scholar 

  38. Powell EM, Mars WM, Levitt P (2001) Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron 30:79–89. doi:10.1016/S0896-6273(01)00264-1

    Article  PubMed  CAS  Google Scholar 

  39. Rodier F, Coppé JP, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979. doi:10.1038/ncb1909

    Article  PubMed  CAS  Google Scholar 

  40. Rössig L, Jadidi AS, Urbich C, Badorff C, Zeiher AM, Dimmeler S (2001) Akt-dependent phosphorylation of p21(Cip1) regulates PCNA binding and proliferation of endothelial cells. Mol Cell Biol 21:5644–5657. doi:10.1128/MCB.21.16.5644-5657.2001

    Article  PubMed  Google Scholar 

  41. Rota M, LeCapitaine N, Hosoda T, Boni A, De Angelis A, Padin-Iruegas ME, Esposito G, Vitale S, Urbanek K, Casarsa C, Giorgio M, Lüscher TF, Pelicci PG, Anversa P, Leri A, Kajstura J (2006) Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 99:42–52. doi:10.1161/01.RES.0000231289.63468.08

    Article  PubMed  CAS  Google Scholar 

  42. Rupp S, Bauer J, von Gerlach S, Fichtlscherer S, Zeiher AM, Dimmeler S, Schranz D (2012) Pressure overload leads to an increase of cardiac resident stem cells. Basic Res Cardiol 107:252. doi:10.1007/s00395-012-0252-x

    Article  PubMed  Google Scholar 

  43. Sanchez-Quintana D, Climent V, Garcia-Martinez V, Macias D, Hurle JM (1994) Extracellular matrix arrangement in the papillary muscles of the adult rat heart. Alterations after doxorubicin administration and experimental hypertension. Basic Res Cardiol 89:279–292

    PubMed  CAS  Google Scholar 

  44. Sharpless NE (2004) Ink4a/Arf links senescence and aging. Exp Gerontol 39:1751–1759. doi:10.1016/j.exger.2004.06.025

    Article  PubMed  CAS  Google Scholar 

  45. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905. doi:10.1056/NEJM199809243391307

    Article  PubMed  CAS  Google Scholar 

  46. Singal PK, Siveski-Iliskovic N, Kaul N, Sahai M (1992) Significance of adaptation mechanisms in adriamycin induced congestive heart failure. Basic Res Cardiol 87:512–518

    Article  PubMed  CAS  Google Scholar 

  47. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908. doi:10.1161/CIRCULATIONAHA.106.655209

    Article  PubMed  Google Scholar 

  48. Spallarossa P, Altieri P, Barisione C, Passalacqua M, Aloi C, Fugazza G, Frassoni F, Podestà M, Canepa M, Ghigliotti G, Brunelli C (2010) p38 MAPK and JNK antagonistically control senescence and cytoplasmic p16INK4A expression in doxorubicin-treated endothelial progenitor cells. PLoS ONE 5:e15583. doi:10.1371/journal.pone.0015583

    Article  PubMed  CAS  Google Scholar 

  49. Steinherz LJ, Steinherz PG, Tan CTC, Heller G, Murphy ML (1991) Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 266:1672–1677. doi:10.1001/jama.1991.03470120074036

    Article  PubMed  CAS  Google Scholar 

  50. Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556. doi:10.1016/S0960-9822(03)00542-6

    Article  PubMed  CAS  Google Scholar 

  51. Takemura G, Fujiwara H (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49:330–352. doi:10.1016/j.pcad.2006.10.002

    Article  PubMed  CAS  Google Scholar 

  52. Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, Zias E, Walsh K, Rosenzweig A, Sussman MA, Urbanek K, Nadal-Ginard B, Kajstura J, Anversa P, Leri A (2004) Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 94:514–524. doi:10.1161/01.RES.0000117306.10142.50

    Article  PubMed  CAS  Google Scholar 

  53. Ueno M, Kakinuma Y, Yuhki K, Murakoshi N, Iemitsu M, Miyauchi T, Yamaguchi I (2006) Doxorubicin induces apoptosis by activation of caspase-3 in cultured cardiomyocytes in vitro and rat cardiac ventricles in vivo. J Pharmacol Sci 101:151–158. doi:10.1254/jphs.FP0050980

    Article  PubMed  CAS  Google Scholar 

  54. Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A, De Angelis A, Hosoda T, Chimenti S, Baker M, Limana F, Nurzynska D, Torella D, Rotatori F, Rastaldo R, Musso E, Quaini F, Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97:663–673. doi:10.1161/01.RES.0000183733.53101.11

    Article  PubMed  CAS  Google Scholar 

  55. Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, Beltrami CA, Bussani R, Beltrami AP, Quaini F, Bolli R, Leri A, Kajstura J, Anversa P (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 102:8692–8697. doi:10.1073/pnas.0500169102

    Article  PubMed  CAS  Google Scholar 

  56. Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci U S A 103:9226–9231. doi:10.1073/pnas.0600635103

    Article  PubMed  CAS  Google Scholar 

  57. Venkatakrishnan CD, Dunsmore K, Wong H, Roy S, Sen CK, Wani A, Zweier JL, Ilangovan G (2008) HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells: p21 upregulation and G2/M phase cell cycle arrest. Am J Physiol Heart Circ Physiol 4:H1736–H1744. doi:10.1152/ajpheart.91507.2007

    Article  Google Scholar 

  58. Wang S, Song P, Zou MH (2012) Inhibition of AMP-activated protein kinase Œ ± (AMPKŒ ±) by doxorubicin accentuates genotoxic stress and cell death in mouse embryonic fibroblasts and cardiomyocytes: role of p53 and SIRT1. J Biol Chem 287:8001–8012. doi:10.1074/jbc.M111.315812

    Article  PubMed  CAS  Google Scholar 

  59. Wu J, Li J, Zhang N, Zhang C (2011) Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation. Basic Res Cardiol 106:317–324. doi:10.1007/s00395-011-0168-x

    Article  PubMed  Google Scholar 

  60. Yao Y, Xu X, Zhang G, Zhang Y, Qian W, Rui T (2012) Role of HMGB1 in doxorubicin-induced myocardial apoptosis and its regulation pathway. Basic Res Cardiol 107:267

    Article  PubMed  Google Scholar 

  61. Zhang H (2007) Molecular signaling and genetic pathways of senescence: its role in tumorigenesis and aging. J Cell Physiol 210:567–574. doi:10.1002/jcp.20919

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Italian Ministry of Education, (PRIN 2007: 2007AL2YNC_004, PRIN 2007: 2007AL2YNC_001), the Italian Ministry of Health (THEAPPL 2008) and the European Commission CORDIS(FP7-BIOSCENT, NMP-214539 2007).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella De Angelis.

Additional information

E. Piegari and A. De Angelis are contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 901 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piegari, E., De Angelis, A., Cappetta, D. et al. Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Res Cardiol 108, 334 (2013). https://doi.org/10.1007/s00395-013-0334-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0334-4

Keywords

Navigation