Skip to main content
Log in

Effect of peptide geroprotectors on navigation learning in rats of different ages and caspase-3 systems in their brain structures

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The effects of peptide geroprotectors, such as cortexin and pinealon, on the training of rats of different ages and the caspase-3 system in their brain structures were studied in the experimental model of acute hypoxic hypoxy. Regional changes were identified in the activity and the content of caspase-3 in the cerebral cortex and brainstem structures of young and old rats under the influence of peptide preparations. It is suggested that the functional state of the caspase-3 system in the brain is one of the reasons for the ability of animals to learn. Compared with cortexin, pinealon has a greater positive effect on the learning of both young and old animals in the Morris labyrinth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barkhatov, D.Yu., Konovalov, R.N., and Fedin, P.A., Efficiency of neuroprotection in therapy of cognitive dysfunctions at chronic brain ischemia, Russ. Med. Zh., 2011, no. 30, pp. 1884–1890.

    Google Scholar 

  2. Gulyaeva, N.V., “Apoptotic” mechanisms in normal brain plasticity: caspase-3 and long-term potentiation, Zh. Vyssh. Nervn. Deyat., 2004, vol. 54, no. 4, pp. 437–447.

    Google Scholar 

  3. Kozina L.S. Effects of bioactive tetrapeptides on free-radical processes, Bull. Exp. Biol. Med., 2007, vol. 143, no. 6, pp. 744–746.

    Article  PubMed  CAS  Google Scholar 

  4. Kudryashova, I.V. and Gulyaeva, N.V., Components of interneurone signaling in transects of rat hippocamp: effects of inhibitors of proteolitic enzymes, Neirokhimiya, 2010, vol. 27, no. 4, pp. 301–308.

    CAS  Google Scholar 

  5. Lysenko, A.V., Arutyunyan, A.V., and Kozina, L.S., Peptidnaya regulyatsiya adaptatsii organizma k stressornym vozdeistviyam (Peptide Regulation of Adaptation of Organism to Stress), Sankt-Petersburg: Voen. Med. Akad., 2005.

    Google Scholar 

  6. Mendzheritskii, A.M., Uskova, N.I., and Lysenko, A.V., Proteolitic processes in rat brain at hypertension and adaptive influence of delta sleep-inducing peptide, Biokhimiya, 1995, vol. 60, no. 4, pp. 585–591.

    CAS  Google Scholar 

  7. Tanashyan, M.M., Maksimova, M.M., and Domashchenko, M.A., Experimental use of cavinton for treatment of patients with acute and chronic cere-brovascular disease, Russ. Med. Zh., 2011, no. 30, pp. 1854–1858.

    Google Scholar 

  8. Khavinson, V.Kh. and Shataeva, L.K., Model of complementary interaction of short peptides with DNA double helix, Med. Akad. Zh., 2005, vol. 5, no. 1, pp. 15–23.

    Google Scholar 

  9. Khavinson, V.Kh., Bondarev, I.E., and Butyugov, A.A., Epitalon peptide induces telomerase activity and telomere elongation in human somatic cells, Bull. Exp. Biol. Med., 2003, vol. 135, no. 6, pp. 590–592.

    Article  PubMed  CAS  Google Scholar 

  10. Yakovlev, A.A., Peregud, D.I., and Pavlova, T.V., Effect of acute introduction of pentylenetetrazole and pentylenetetrazole-kindling: oxidative stress and activity of NO-synthase in the brain, Neirokhimiya, 2004, vol. 21, no. 1, pp. 58–67.

    CAS  Google Scholar 

  11. Algeciras-Schimnich, A., Barnhart, B.C., and Peter, M.E., Apoptosis—independent functions of killer caspases, Curr. Opin. Cell Biol., 2002, vol. 14, no. 16, pp. 721–726.

    Article  PubMed  CAS  Google Scholar 

  12. Benson, R.S., Dive, C., and Watson, A.J., Cytoplasmic acidification is not an effector mechanism of VP16 or DEX-induced apoptosis in CEM T leukemia cells, J. Cell Sci., 1999, vol. 112, pp. 1755–1760.

    PubMed  CAS  Google Scholar 

  13. Bishop, N.A., Lu, T., and Yankner, B.A., Neural mechanisms of aging and cognitive decline, Nature, 2010, vol. 464, pp. 529–535.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Bradford, J.M., A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  15. Caspases: Their Role in Cell Death and Cell Survival, Los, M. and Waczak, H., Eds., New York: Kluwer, 2002.

    Google Scholar 

  16. Gulyaeva, N., Kudryashov, I., and Kudriashova, I., Caspase activity is essential for long term potentiation, J. Neurosci. Res., 2003, vol. 73, no. 6, pp. 853–864.

    Article  PubMed  CAS  Google Scholar 

  17. Kanamori, A., Catrinescu, M.-M., Kanamori, N., et al., Superoxide is an associated signal for apoptosis in axonal injury, Brain, 2010, vol. 133, pp. 2612–2625.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Los, M., Stroh, C., Janicke, R.U., et al., Caspases: more than just killers?, Trends Immunol., 2001, vol. 22, pp. 31–34.

    Article  PubMed  CAS  Google Scholar 

  19. Lu, T., Pan, Y., Kao, S.Y., et al., Gene regulation and DNA damage in the aging human brain, Nature, 2004, vol. 429, no. 6994, pp. 883–891.

    Article  PubMed  CAS  Google Scholar 

  20. Mattson, M.P. and Duan, W., “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders, Physiol. Rev., 2002, vol. 82, pp. 637–672.

    PubMed  CAS  Google Scholar 

  21. Mendzheritskii, A.M., Matsionis, A., and Lysenko, A., The role of DSIP in calpain activity regulation under hypoxia, in Neurochemistry: Cellular, Molecular and Clinical Aspects, Telken and Korf-Plenum Press, 1997, pp. 419–422.

    Google Scholar 

  22. Onufriev, M.V., Yakovlev, A.A., Lyzhin, A.A., et al., A secreted caspase-3-substrate-cleaving activity at low pH belongs to cathepsin B: a study on primary brain cell cultures, Biochemistry, 2009, vol. 74, no. 3, pp. 281–287.

    PubMed  CAS  Google Scholar 

  23. Park, D.C. and Reuter-Lorenz, P., The adaptive brain: aging and neurocognitive scaffolding, Annu. Rev. Psychol., 2009, vol. 60, pp. 173–196.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Su, X., Zhu, C. L., Shi, W., et al., Transient global cerebral ischemia induces up-regulation of MLTK in hippocampal CA1 neurons, J. Mol. Histol., 2012, vol. 43, no. 2, pp. 187–193.

    Article  PubMed  CAS  Google Scholar 

  25. Takahashi, A., Ohtani, N., Yamakoshi, K., et al., Mitogenic signaling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence, Nat. Cell Biol., 2006, vol. 8, pp. 1291–1297.

    Article  PubMed  CAS  Google Scholar 

  26. Tomimatsu, Y., Idemotoa, S., Mariguchia, S., et al., Proteases involved in long-term potentiation, Life Sci., 2002, vol. 72, pp. 355–361.

    Article  PubMed  CAS  Google Scholar 

  27. Yakovlev, A.A., Gorokhovatsky, A.Y., et al., Brain cathepsin B cleaves a caspase substrate, Biochemistry, 2008, vol. 73, no. 3, pp. 332–336.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mendzheritskii.

Additional information

Original Russian Text © A.M. Mendzheritskii, G.V. Karantysh, V.A. Abramchuk, G.A. Ryzhak, 2013, published in Uspekhi Gerontologii, 2013, Vol. 26, No. 2, pp. 252–257.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendzheritskii, A.M., Karantysh, G.V., Abramchuk, V.A. et al. Effect of peptide geroprotectors on navigation learning in rats of different ages and caspase-3 systems in their brain structures. Adv Gerontol 4, 37–41 (2014). https://doi.org/10.1134/S2079057014010068

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057014010068

Keywords

Navigation