Skip to main content
Log in

Traditional and New Approaches to the Creation of Biomedical Materials Based on Polyhydroxyalkanoates with Antimicrobial Activity

  • PHYSICOCHEMICAL FOUNDATIONS OF DEVELOPMENT OF MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The principles of creating biomedical materials based on biopolymers and their compositions for various medical applications are considered. The direction of creating materials with antimicrobial activity is especially emphasized using the example of polyhydroxyalkanoates. These biopolymers and composites based on them are most frequently used in the production of medical devices. Polyhydroxyalkanoates as a class of biopolymers, as well as polyhydroxybutyrate, the representative of this class most suitable for biomedical use, are analyzed in the context of increasing resistance to microorganisms. Progress in this direction achieved in recent years is reported. The influence of the supramolecular and molecular structure of the materials on the ability to biodegrade in the environment and a living organism is considered. The advantage of mixtures of biopolymers for achieving high degradation rates in comparison with the original polymers is noted. Promising antiseptics based on porphyrin metal complexes in combination with biopolymer nonwoven fibrous matrices are demonstrated. Characteristic features of preclinical tests of antiseptic materials are considered. A conclusion is drawn that the structural organization of a polymeric material or composite determines the level of intermolecular interactions during the formation of the material and thereby programs the set of functional properties and mechanism of degradation under the influence of aggressive external factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Huang, H.J., Tsai, Y.L., Lin, S.H., et al., Smart polymers for cell therapy and precision medicine, J. Biomed. Sci., 2019, vol. 26, p. 73. https://doi.org/10.1186/s12929-019-0571-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang, X., Liu, X.-Y., Yang, H., Chen, J.-N., Lin, Y., Han, S.-Y., Cao, Q., Zeng, H.-S., and Ye, J.-W., A polyhydroxyalkanoates-based carrier platform of bioactive substances for therapeutic applications, Front. Bioeng. Biotechnol., 2021, vol. 9, p. 798724. https://doi.org/10.3389/fbioe.2021.798724

  3. Samrot, A.V., Samanvitha, S.K., Shobana, N., Renit-ta, E.R., Senthilkumar, P., Kumar, S.S., Abirami, S., Dhiva, S., Bavanilatha, M., Prakash, P., Saigeetha, S., Shree, K.S., and Thirumurugan, R., The synthesis, characterization and applications of polyhydroxyalkanoates (PHAs) and PHA-based nanoparticles, Polymers, 2021, vol. 13, no. 19, p. 3302. https://doi.org/10.3390/polym13193302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ol’khov, A.A., Gorshenev, V.N., Staroverova, O.V., et al., The morphology of fibrous matrices for medical use from poly-3-oxybutyrate obtained by electrospinning, Polym. Sci., Ser. D, 2019, vol. 12, pp. 58–63. https://doi.org/10.1134/S1995421219010143

    Article  Google Scholar 

  5. Muñoz-Bonilla, A., Echeverria, C., Sonseca, Á., Arrieta, M.P., and Fernández-García, M., Bio-based polymers with antimicrobial properties towards sustainable development, Materials, 2019, vol. 12, no. 4, p. 641. https://doi.org/10.3390/ma12040641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amos-Tautua, B.M., Songca, S.P., and Oluwafe-mi, O.S., Application of porphyrins in antibacterial photodynamic therapy, Molecules, 2019, vol. 24, no. 13, p. 2456. https://doi.org/10.3390/molecules24132456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beyene, B.B., Mihirteu, A.M., Ayana, M.T., and Yibeltal, A.W., Synthesis, characterization and antibacterial activity of metalloporphyrins: Role of central metal ion, Results Chem., 2020, vol. 2, p. 100073. https://doi.org/10.1016/j.rechem.2020.100073

  8. Torres-Martinez, E.J., Bravo, J.M.C., Medina, A.S., González, G.L.P., and Gómez, L.J.V., A summary of electrospun nanofibers as drug delivery system: Drugs loaded and biopolymers used as matrices, Curr. Drug Delivery, 2018, vol. 15, no. 10, pp. 1360–1374. https://doi.org/10.2174/1567201815666180723114326

    Article  CAS  Google Scholar 

  9. Pires, L.R., Electrospun fibers for drug and molecular delivery, in Electrofluidodynamic Technologies (EFDTs) for Biomaterials and Medical Devices: Principles and Advances, Guarino, V. and Ambrosio, L., Eds., Woodhead, 2018, pp. 157–177. ISBN 978-0-08-101745-6.https://doi.org/10.1016/B978-0-08-101745-6.00009-8

    Book  Google Scholar 

  10. Luraghi, A., Peri, F., and Moroni, L., Electrospinning for drug delivery applications: A review, J. Controlled Release, 2021, vol. 334, pp. 463–484. https://doi.org/10.1016/j.jconrel.2021.03.033

    Article  CAS  Google Scholar 

  11. Rudin, A., and Choi, P., The Elements of Polymer Science & Engineering, Academic, 2013. ISBN 978-0-12-382178-2.https://doi.org/10.1016/C2009-1-64286-6

    Book  Google Scholar 

  12. Balani, K., Verma, V., Agarwal, A., and Narayan, R., Biosurfaces: A Materials Science and Engineering Perspective, Wiley, 2015, pp. 329–344.

    Google Scholar 

  13. Maitz, M.F., Applications of synthetic polymers in clinical medicine, Biosurf. Biotribol., 2015, vol. 1, no. 3, pp. 161–176. https://doi.org/10.1016/j.bsbt.2015.08.002

    Article  Google Scholar 

  14. Pagliano, G., Galletti, P., Samorì, C., Zaghini, A., and Torri, C., Recovery of polyhydroxyalkanoates from single and mixed microbial cultures: A review, Front. Bioeng. Biotechnol., 2021, vol. 9, p. 624021. https://doi.org/10.3389/fbioe.2021.624021

  15. Rajan, K.P., Thomas, S.P., Gopanna, A., and Chavali, M., Polyhydroxybutyrate (PHB): A standout biopolymer for environmental sustainability, in Handbook of Ecomaterials, Martínez, L.M.T., Kharissova, O.V., and Kharisov, B.I., Eds., Cham: Springer, 2017, pp. 1–23. https://doi.org/10.1007/978-3-319-48281-1_92-1

    Book  Google Scholar 

  16. Suo, Z., Chen, J., Hou, X., Hu, Z., Xing, F., and Feng, L., Growing prospects of DNA nanomaterials in novel biomedical applications, RSC Adv., 2019, vol. 9, no. 29, pp. 16479–16491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thakur, M.K. and Kessler, M.R., Handbook of Composites from Renewable Materials, Wiley, 2017, vol. 1.

    Book  Google Scholar 

  18. Mannina, G., Presti, D., Montiel-Jarillo, G., and Suarez-Ojeda, M.E., Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures, Bioresour. Technol., 2019, vol. 282, pp. 361–369.

    Article  CAS  PubMed  Google Scholar 

  19. Xue, J., Wu, T., Dai, Y., and Xia, Y., Electrospinning and electrospun nanofibers: Methods, materials, and applications, Chem. Rev., 2019, vol. 119, no. 8, pp. 5298–5415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jimoh, S.O., Adefaye, K.O., Arowolo, L.A., and Badmos-Oladapo, R.B., Evaluation of chitinolytic enzymes activities during microbial biotransformation of Archachatina marginata exoskeleton to chitooligosaccharide, Novel Res. Microbiol. J., 2022, vol. 6, no. 2, pp. 1530–1542. https://doi.org/10.21608/nrmj.2022.231601

    Article  CAS  Google Scholar 

  21. Steinbüchel, A. and Valentin, H.E., Diversity of bacterial polyhydroxyalkanoic acids, FEMS Microbiol. Lett., 1995, vol. 128, pp. 219–228.

    Article  Google Scholar 

  22. Karan, H., Funk, C., Grabert, M., Oey, M., and Hankamer, B., Green bioplastics as part of a circular bioeconomy, Trends Plant Sci., 2019, vol. 24, no. 3, pp. 237–249. https://doi.org/10.1016/j.tplants.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  23. Obulisamy, P.K. and Mehariya, S., Polyhydroxyalkanoates from extremophiles: A review, Bioresour. Technol., 2021, vol. 325, p. 124653. https://doi.org/10.1016/j.biortech.2020.124653

  24. Santos, A.J., Veriano, L., Valentina, O.D., et al., From obtaining to degradation of PHB: Material properties. Part I, Ing. Cienc., 2017, vol. 13, no. 26, pp. 269–298.

    Article  Google Scholar 

  25. Arias, D.M., García, J., and Uggetti, E., Production of polymers by cyanobacteria grown in wastewater: Current status, challenges and future perspectives, New Biotechnol., 2020, vol. 55, pp. 46–57. https://doi.org/10.1016/j.nbt.2019.09.001

    Article  CAS  Google Scholar 

  26. Ray, S. and Kalia, V.C., Biomedical applications of polyhydroxyalkanoates, Indian J. Microbiol., 2017, vol. 57, no. 3, pp. 261–269. https://doi.org/10.1007/s12088-017-0651-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grassie, N. and Murray, E.J., The thermal degradation of poly(-(D)-β-hydroxybutyric acid): Part I—Identification and quantitative analysis of products, Polym. Degrad. Stab., 1984, vol. 6, no. 1, pp. 47–61. https://doi.org/10.1016/0141-3910(84)90016-8

    Article  CAS  Google Scholar 

  28. Tabassum, R. and Kant, R., Recent trends in surface plasmon resonance-based fiber–optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities, Sens. Actuators, B, 2020, vol. 310, p. 127813.

  29. Dilkes-Hoffman, L.S., Lant, P.A., Laycock, B., and Pratt, S., The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study, Mar. Pollut. Bull., 2019, vol. 142, pp. 15–24. https://pubmed.ncbi.nlm.nih.gov/31232288https://doi.org/10.1016/j.marpolbul.2019.03.020

    Article  CAS  PubMed  Google Scholar 

  30. Boyandin, A.N., Prudnikova, S.V., Filipenko, M.L., Khrapov, E.A., Vasil’ev, A.D., and Volova, T.G., Biodegradation of polyhydroxyalkanoates by soil microbial communities of different structures and detection of PHA degrading microorganisms, Appl. Biochem. Microbiol., 2012, vol. 48, no. 1, pp. 28–36. https://doi.org/10.1134/S0003683812010024

    Article  CAS  Google Scholar 

  31. Shahid, S., Razzaq, S., Farooq, R., and Nazli, Z.H., Polyhydroxyalkanoates: Next generation natural biomolecules and a solution for the world’s future economy, Int. J. Biol. Macromol., 2021, vol. 166, pp. 297–321. https://doi.org/10.1016/j.ijbiomac.2020.10.187

    Article  CAS  PubMed  Google Scholar 

  32. Miu, D.-M., Eremia, M.C., and Moscovici, M., Polyhydroxyalkanoates (PHAs) as biomaterials in tissue engineering: Production, isolation, characterization, Materials, 2022, vol. 15, p. 1410. https://doi.org/10.3390/ma15041410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hemocompatibility of Biomaterials for Clinical Applications: Blood-Biomaterials Interactions, Siedlecki, C.A., Ed., Woodhead, 2018, pp. 457–469. https://doi.org/10.1016/C2014-0-04140-8

  34. Cho, J.Y., Park, S.L., Lee, H.-J., Kim, S.H., Suh, M.J., Ham, S., et al., Polyhydroxyalkanoates (PHAs) degradation by the newly isolated marine Bacillus sp. JY14, Chemosphere, 2021, vol. 283, p. 131172. https://doi.org/10.1016/j.chemosphere.2021.131172

  35. Doyle, V., Pearson, R., Lee, D., et al., An investigation of the growth of human dermal fibroplasts on poly-L-lactic acid in vitro, J. Mater. Sci.: Mater. Med., 1996, vol. 7, pp. 381–385. https://doi.org/10.1007/BF00154554

    Article  CAS  Google Scholar 

  36. Grigore, M.E., Grigorescu, R.M., Iancu, L., Ion, R.-M., Zaharia, C., and Andrei, E.R., Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: A review, J. Biomater. Sci., Polym. Ed., 2019, vol. 30, no. 9, pp. 695–712. https://doi.org/10.1080/09205063.2019.1605866

    Article  CAS  PubMed  Google Scholar 

  37. Penkhrue, W., Jendrossek, D., Khanongnuch, C., Pathom-aree, W., Aizawa, T., Behrens, R.L., and Lumyong, S., Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel, PLoS One, 2020, vol. 15, no. 3, p. e0230443. https://doi.org/10.1371/journal.pone.0230443

  38. Olejnik, O., Masek, A., and Zawadziłło, J., Processability and mechanical properties of thermoplastic polylactide/polyhydroxybutyrate (PLA/PHB) bioblends, Materials, 2021, vol. 14, no. 4, p. 898. https://doi.org/10.3390/ma14040898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, G., Cao, L., Cao, C., Zhao, P., Li, F., Xu, B., and Huang, Q., Effective and sustained control of soil-borne plant diseases by biodegradable polyhydroxybutyrate mulch films embedded with fungicide of prothioconazole, Molecules, 2021, vol. 26, no. 3, p. 762. https://doi.org/10.3390/molecules26030762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pankova, Yu.N., Shchegolikhin, A.N., Iordanskii, A.L., Zhulkina, A.L., Ol’khov, A.A., and Zaikov, G.E., The characterization of novel biodegradable blends based on polyhydroxybutyrate: The role of water transport, J. Mol. Liq., 2010, vol. 156, no. 1, pp. 65–69.

    Article  CAS  Google Scholar 

  41. Arrieta, M.P., Samper, M.D., Aldas, M., and López, J., On the use of PLA-PHB blends for sustainable food packaging applications, Materials, 2017, vol. 10, no. 9, p. 1008.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pachekoski, W.M., Dalmolin, C., and Agnelli, J.A.M., The influence of the industrial processing on the degradation of poly(hydroxybutyrate)—PHB, Mater. Res., 2013, vol. 16, no. 2, pp. 237–332.

    Article  Google Scholar 

  43. Braunegg, G., Lefebvre, G., and Genser, K., Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects, J. Biotechnol., 1998, vol. 65, nos. 2–3, pp. 127–161. https://doi.org/10.1016/S0168-1656(98)00126-6

  44. Elmowafy, E., Abdal-Hay, A., Skouras, A., Tiboni, M., Casettari, L., and Guarino, V., Polyhydroxyalkanoate (PHA): Applications in drug delivery and tissue engineering, Expert Rev. Med. Devices, 2019, vol. 16, no. 6, pp. 467–482. https://doi.org/10.1080/17434440.2019.1615439

    Article  CAS  PubMed  Google Scholar 

  45. Volova, T.G., Degradable polyhydroxyalkanoates of microbial origin as a technical analog of non-degradable polyolefines, Zh. Sib. Fed. Univ., Ser. Biol., 2015, vol. 8, no. 2, pp. 131–151. https://doi.org/10.17516/1997-1389-2015-8-2-131-151

    Article  Google Scholar 

  46. Mehrpouya, M., Vahabi, H., Barletta, M., Laheurte, P., and Langlois, V., Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: Materials, printing techniques, and applications, Mater. Sci. Eng., C, 2021, vol. 127, p. 112216. https://doi.org/10.1016/j.msec.2021.112216

  47. Androsch, R., Radusch, H.-J., and Funari, S.S., Crystallization, glass transition and morphology of (R)-3-hydroxybutyrate oligomers, Eur. Polym. J., 2017, vol. 43, no. 12, pp. 4961–4974. https://doi.org/10.1016/j.eurpolymj.2007.10.004

    Article  CAS  Google Scholar 

  48. Cobntbekt, J. and Mabchessault, R.H., Physical properties of poly-β-hydroxybutyrate: IV. Conformational analysis and crystalline structure, J. Mol. Biol., 1972, vol. 71, no. 3, pp. 735–756. https://doi.org/10.1016/S0022-2836(72)80035-4

    Article  Google Scholar 

  49. Hoffman, J.D., Davis, G.T., and Lauritzen, J.I., Jr., The rate of crystallization of linear polymers with chain folding, in Treatise on Solid State Chemistry, vol. 3: Crystalline and Noncrystalline Solids, Hannay, N.B., Ed., Boston, MA: Springer, 1976, pp. 497–614. https://doi.org/10.1007/978-1-4684-2664-9_7

  50. Di, Y., Xia, H., Jiao, Y., Zhang, X., Fang, Q., Li, F., and Chen, S., Biodegradation of polyhydroxybutyrate by Pseudomonas sp. SDY0501 and purification and characterization of polyhydroxybutyrate depolymerase, 3 Biotech, 2019, vol. 9, no. 10, p. 359. https://doi.org/10.1007/s13205-019-1871-9

  51. Rech, C.R., da Silva Brabes, K.C., Bagnara de Silva, B.E., Bittencourt, P.R.S., Koschevic, M.T., Serantoni da Silveira, T.F., Martines, M.A.U., Caon, T., and Martelli, S.M., Biodegradation of eugenol-loaded polyhydroxybutyrate films in different soil types, Case Stud. Chem. Environ. Eng., 2020, vol. 2, p. 100014. https://doi.org/10.1016/j.cscee.2020.100014

  52. Martínez-Tobón, D.I., Gul, M., Elias, A.L., et al., Polyhydroxybutyrate (PHB) biodegradation using bacterial strains with demonstrated and predicted PHB depolymerase activity, Appl. Microbiol. Biotechnol., 2018, vol. 102, pp. 8049–8067. https://doi.org/10.1007/s00253-018-9153-8

    Article  CAS  PubMed  Google Scholar 

  53. Gutierrez-Wing, M.T., Stevens, B.E., Theegala, C.S., Negulescu, I.I., and Rusch, K.A., Aerobic biodegradation of polyhydroxybutyrate in compost, Environ. Eng. Sci., 2011, vol. 28, no. 7, pp. 477–488. https://doi.org/10.1089/ees.2010.0208

    Article  CAS  Google Scholar 

  54. Boey, J.Y., Mohamad, L., Khok, Y.S., Tay, G.S., and Baidurah, S., A review of the applications and biodegradation of polyhydroxyalkanoates and poly(lactic acid) and its composites, Polymers, 2021, vol. 13, p. 1544. https://doi.org/10.3390/polym13101544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baidurah, S., Kubo, Y., Ishida, Y., and Yamane, T., Direct determination of poly(3-hydroxybutyrate) accumulated in bacteria by thermally assisted hydrolysis and methylation-gas chromatography in the presence of organic alkali, Pure Appl. Chem., 2018, vol. 90, pp. 1011–1017.

    Article  CAS  Google Scholar 

  56. Chaijamrus, S. and Udpuay, N., Production and characterization of polyhydroxybutyrate from molasses and corn steep liquor produced by Bacillus megaterium ATCC 6748, CIGR J., 2008, vol. 10, pp. 1–12.

    Google Scholar 

  57. Bhagowati, P., Pradhan, S., Dash, H.R., and Das, S., Production, optimization and characterization of polyhydroxybutyrate, a biodegradable plastic by Bacillus spp., Biosci. Biotechnol. Biochem., 2015, vol. 79, no. 9, pp. 1454–1463. https://doi.org/10.1080/09168451.2015.1034651

    Article  CAS  PubMed  Google Scholar 

  58. Ong, S.Y., Kho, H.-P., Riedel, S.L., Kim, S.-W., Gan, C.-Y., Taylor, T.D., and Sudesh, K., An integrative study on biologically recovered polyhydroxyalkanoates (PHAs) and simultaneous assessment of gut microbiome in yellow mealworm, J. Biotechnol., 2018, vol. 265, pp. 31–39. https://doi.org/10.1016/j.jbiotec.2017.10.017

    Article  CAS  PubMed  Google Scholar 

  59. Payen, J., Vroman, P., Lewandowski, M., Perwuelz, A., Callé-Chazelet, S., and Thomas, D., Influence of fiber diameter, fiber combinations and solid volume fraction on air filtration properties in nonwovens, Text. Res. J., 2012, vol. 82, no. 19, pp. 1948–1959. https://doi.org/10.1177/0040517512449

    Article  CAS  Google Scholar 

  60. Çelik, H.İ., Determination of air permeability property of air-laid nonwoven fabrics using regression analyses, Period. Eng. Nat. Sci., 2017, vol. 5, no. 2, pp. 210–216.

    Google Scholar 

  61. Merrick, J.M., Steger, R., and Dombroski, D., Hydrolysis of native poly(hydroxybutyrate) granules (PHB), crystalline PHB, and artificial amorphous PHB granules by intracellular and extracellular depolymerases, Int. J. Biol. Macromol., 1999, vol. 25, nos. 1–3, pp. 129–134. https://doi.org/10.1016/s0141-8130(99)00026-4

  62. Sznajder, A. and Jendrossek, D., Biochemical characterization of a new type of intracellular PHB depolymerase from Rhodospirillum rubrum with high hydrolytic activity on native PHB granules, Appl. Microbiol. Biotechnol., 2011, vol. 89, no. 5, pp. 1487–1495. https://doi.org/10.1007/s00253-011-3096-7

    Article  CAS  PubMed  Google Scholar 

  63. Kučera, F., Petruš, J., and Jančář, J., The structure-hydrolysis relationship of poly(3-hydroxybutyrate), Polym. Test., 2019, vol. 80, p. 106095. https://doi.org/10.1016/j.polymertesting.2019.106095

  64. Luraghi, A., Peri, F., and Moroni, L., Electrospinning for drug delivery applications: A review, J. Controlled Release, 2021, vol. 334, pp. 463–484. https://doi.org/10.1016/j.jconrel.2021.03.033

    Article  CAS  Google Scholar 

  65. Petrulyte, S., Advanced textile materials and biopolymers in wound management, Dan. Med. Bull., 2008, vol. 55, no. 1, pp. 72–77.

    CAS  PubMed  Google Scholar 

  66. Guo, Y. and Thérien-Aubin, H., Nanofibrous photocatalytic membranes based on tailored anisotropic gold/ceria nanoparticles, ACS Appl. Mater. Interfaces, 2021, vol. 13, pp. 37578–37588. https://doi.org/10.1021/acsami.1c11954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhijiang, C., Cong, Z., Jie, G., Qing, Z., and Kongyin, Z., Electrospun carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds: Preparation, characterization and cytocompatibility, Mater. Sci. Eng., C, 2018, vol. 82, pp. 29–40. https://doi.org/10.1016/j.msec.2017.08.005

    Article  CAS  Google Scholar 

  68. Zeng, J., Aigner, A., Czubayko, F., Kissel, T., Wendorff, J.H., and Greiner, A., Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and retardation of enzyme release by additional polymer coatings, Biomacromolecules, 2005, vol. 6, no. 3, pp. 1484–1488. https://doi.org/10.1021/bm0492576

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, C., Li, Y., Wang, P., and Zhang, H., Electrospinning of nanofibers: Potentials and perspectives for active food packaging, Compr. Rev. Food Sci. Food Saf., 2020, vol. 19, no. 2, pp. 479–502. https://doi.org/10.1111/1541-4337.12536

    Article  CAS  PubMed  Google Scholar 

  70. Joung, Y.K., Bae, J.W., and Park, K.D., Controlled release of heparin-binding growth factors using heparin-containing particulate systems for tissue regeneration, Expert Opin. Drug Delivery, 2008, vol. 5, pp. 1173–1184. https://doi.org/10.1517/17425240802431811

    Article  CAS  Google Scholar 

  71. Ru, C., Wang, F., Pang, M., Sun, L., Chen, R., and Sun, Y., Suspended, shrinkage-free, electrospun PLGA nanofibrous scaffold for skin tissue engineering, ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 10872–10877.

    Article  CAS  PubMed  Google Scholar 

  72. Bacakova, L., Pajorova, J., Zikmundova, M., Filova, E., Mikes, P., Jencova, V., Kuzelova-Kostakova, E., and Sinica, A., Nanofibrous scaffolds for skin tissue engineering and wound healing based on nature-derived polymers, in Current and Future Aspects of Nanomedicine, Khalil, I.A., Ed., IntechOpen, 2020. https://doi.org/10.5772/intechopen.88602

    Book  Google Scholar 

  73. Xu, X., Yang, Q., Wang, Y., Yu, H., Chen, X., and Jing, X., Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles, Eur. Polym. J., 2006, vol. 42, no. 9, pp. 2081–2087. https://doi.org/10.1016/j.eurpolymj.2006.03.032

    Article  CAS  Google Scholar 

  74. Perveen, K., Masood, F., and Hameed, A., Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles, Int. J. Biol. Macromol., 2019, vol. 144, pp. 259–266. PMID .https://doi.org/10.1016/j.ijbiomac.2019.12.04931821825

    Article  CAS  PubMed  Google Scholar 

  75. Tiwari, A. and Chaturvedi, A., Antimicrobial coatings—technology advancement or scientific myth, in Handbook of Antimicrobial Coatings, Elsivier, 2018, pp. 1–5. https://doi.org/10.1016/B978-0-12-811982-2.00001-9

    Book  Google Scholar 

  76. Pourpirali, R., Mahmoudnezhad, A., Oroojalian, F., Zarghami, N., and Pilehvar, Y., Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO2 nanoparticles and metformin-loaded mesoporous silica nanoparticles, Int. J. Pharm., 2021, vol. 604, p. 120733. https://doi.org/10.1016/j.ijpharm.2021.120733

  77. Kim, J.K. and Ahn, H., Fabrication and characterization of polystyrene/gold nanoparticle composite nanofibers, Macromol. Res., 2008, vol. 16, no. 2, pp. 163–168.

    Article  CAS  Google Scholar 

  78. Patel, S., Konar, M., Sahoo, H.K., and Hota, G., Surface functionalization of electrospun PAN nanofibers with ZnO–Ag heterostructure nanoparticles: Synthesis and antibacterial study, Nanotechnology, 2019, vol. 30, no. 20, p. 205704. https://doi.org/10.1088/1361-6528/ab045d

  79. Kim, E.S., Kim, S.H., and Lee, C.H., Electrospinning of polylactide fibers containing silver nanoparticles, Macromol. Res., 2010, vol. 18, no. 3, pp. 215–221. https://doi.org/10.1007/s13233-010-0316-4

    Article  CAS  Google Scholar 

  80. Fotia, A., Malara, A., Paone, E., Bonaccorsi, L., Frontera, P., Serrano, G., and Caneschi, A., Self standing mats of blended polyaniline produced by electrospinning, Nanomaterials, 2021, vol. 11, p. 1269. https://doi.org/10.3390/nano11051269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sun, Z., Liao, T., and Kou, L., Strategies for designing metal oxide nanostructures, Sci. China Mater., 2017, vol. 60, no. 1, pp. 1–24. https://doi.org/10.1007/s40843-016-5117-0

    Article  CAS  Google Scholar 

  82. Döpke, C., Grothe, T., Steblinski, P., Klöcker, M., Sabantina, L., Kosmalska, D., and Ehrmann, A., Magnetic nanofiber mats for data storage and transfer, Nanomaterials, 2019, vol. 9, no. 1, p. 92. https://doi.org/10.3390/nano9010092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muñoz-Bonilla, A., Cerrada, M., Fernández-García, M., Kubacka, A., Ferrer, M., and Fernández-García, M., Biodegradable polycaprolactone-titania nanocomposites: Preparation, characterization and antimicrobial properties, Int. J. Mol. Sci., 2013, vol. 14, no. 5, pp. 9249–9266.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Debashis, P. and Tseng, T.-Y., One-dimensional ZnO nanostructures: Fabrication, optoelectronic properties, and device applications, J. Mater. Sci., 2013, vol. 48, pp. 6849–6877.

    Article  Google Scholar 

  85. Zhong, Y., Deng, C., He, Y., and Song, G., Exploring a monothiolated β-cyclodextrin as the template to synthesize copper nanoclusters with exceptionally increased peroxidase-like activity, Microchim. Acta, 2016, vol. 183, no. 10, pp. 2823–2830.

    Article  CAS  Google Scholar 

  86. Ozawa, H., Machmudah, S., Wahyudiono, Kanda, H., and Goto, M., Electrospinning of poly(vinyl pyrrolidone) fibers containing metal oxide nanoparticles under dense CO2, Res. Chem. Intermed., 2018, vol. 44, pp. 2215–2230. https://doi.org/10.1007/s11164-017-3224-9

    Article  CAS  Google Scholar 

  87. Sangmanee, M. and Maensiri, S., Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning, Appl. Phys. A, 2009, vol. 97, pp. 167–177. https://doi.org/10.1007/s00339-009-5256-5

    Article  CAS  Google Scholar 

  88. Buzea, C., Pacheco, I.I., and Robbie, K., Nanomaterials and nanoparticles: Sources and toxicity, Biointerphases, 2007, vol. 2, no. 4, pp. MR17–MR71. https://doi.org/10.1116/1.2815690

    Article  PubMed  Google Scholar 

  89. Campbell, C.D., Hird, M., Lumsdon, D.G., and Meeussen, J.C.L., The effect of EDTA and fulvic acid on Cd, Zn, and Cu toxicity to a bioluminescent construct (pUCD607) of Escherichia coli, Chemosphere, 2000, vol. 40, no. 3, pp. 319–325. https://doi.org/10.1016/S0045-6535(99)00302-1

    Article  CAS  PubMed  Google Scholar 

  90. Ferdous, Z. and Nemmar, A., Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure, Int. J. Mol. Sci., 2020, vol. 21, no. 7, p. 2375. https://doi.org/10.3390/ijms21072375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Allsopp, M., Walters, A., and Santino, D., Nanotechnologies and Nanomaterials in Electrical and Electronic Goods: A Review of Uses and Health Concerns, Greenpeace Res. Lab., 2007, GRL-TN-09-2007. https://www.greenpeace.to/publications/nanotech_in_electronics_2007.pdf.

  92. Stensberg, M.C., Wei, Q., McLamore, E.S., Porterfield, D.M., Wei, A., and Sepúlveda, M.S., Toxicological studies on silver nanoparticles: Challenges and opportunities in assessment, monitoring and imaging, Nanomedicine, 2011, vol. 6, no. 5, pp. 879–898. https://doi.org/10.2217/nnm.11.78

    Article  CAS  PubMed  Google Scholar 

  93. Huang, C., Soenen, S.J., Rejman, J., Lucas, B., Braeckmans, K., Demeester, J., and De Smedt, S.C., Stimuli-responsive electrospun fibers and their applications, Chem. Soc. Rev., 2011, vol. 40, no. 5, pp. 2417–2434. https://doi.org/10.1039/C0CS00181C

    Article  CAS  PubMed  Google Scholar 

  94. Aguirre-Chagala, Y.E., Altuzar, V., León-Sarabia, E., Tinoco-Magaña, J.C., Yañez-Limón, J.M., and Mendoza-Barrera, C., Physicochemical properties of polycaprolactone/collagen/elastin nanofibers fabricated by electrospinning, Mater. Sci. Eng., C, 2017, vol. 76, pp. 897–907. https://doi.org/10.1016/j.msec.2017.03.118

    Article  CAS  Google Scholar 

  95. Pang, L., Ming, J., Pan, F., and Ning, X., Fabrication of silk fibroin fluorescent nanofibers via electrospinning, Polymers, 2019, vol. 11, no. 6, p. 986. https://doi.org/10.3390/polym11060986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhan, J., Morsi, Y., EI-Hamshary, H., Al-Deyab, S.S., and Mo, X., Preparation and characterization of electrospun in-situ cross-linked gelatin-graphite oxide nanofibers, J. Biomater. Sci., Polym. Ed., 2016, vol. 27, no. 5, pp. 385–402. https://doi.org/10.1080/09205063.2015.1133156

    Article  CAS  PubMed  Google Scholar 

  97. Al-Enizi, A., Zagho, M., and Elzatahry, A., Polymer-based electrospun nanofibers for biomedical applications, Nanomaterials, 2018, vol. 8, no. 4, p. 259. https://doi.org/10.3390/nano8040259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Severyukhina, A.N., Petrova, N.V., Smuda, K., Terentyuk, G.S., Klebtsov, B.N., Georgieva, R., and Gorin, D.A., Photosensitizer-loaded electrospun chitosan-based scaffolds for photodynamic therapy and tissue engineering, Colloids Surf., B, 2016, vol. 144, pp. 57–64.

    Article  CAS  Google Scholar 

  99. George, L., Hiltunen, A., Santala, V., and Efimov, A., Photo-antimicrobial efficacy of zinc complexes of porphyrin and phthalocyanine activated by inexpensive consumer LED lamp, J. Inorg. Biochem., 2018, vol. 183, pp. 94–100.

    Article  CAS  PubMed  Google Scholar 

  100. Green, D.P., Limjunyawong, N., Gour, N., Pundir, P., and Dong, X., A mast-cell-specific receptor mediates neurogenic inflammation and pain, Neuron, 2019, vol. 101, no. 3, pp. 412–420. https://doi.org/10.1016/j.neuron.2019.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arenbergerova, M., Arenberger, P., Bednar, M., Kubat, P., and Mosinger, J., Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing, Exp. Dermatol., 2012, vol. 21, no. 8, pp. 619–624.

    Article  CAS  PubMed  Google Scholar 

  102. Poulos, T.L., Heme enzyme structure and function, Chem. Rev., 2014, vol. 114, no. 7, pp. 3919–3962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shah, E.V., Kumar, V., Sharma, B.K., Rajput, K., Chaudhary, V.P., and Roy, D.R., Co-tetraphenylporphyrin (co-TPP) in TM-TPP (TM = Fe, Co, Ni, Cu, and Zn) series: A new optical material under DFT, J. Mol. Model., 2018, vol. 24, no. 9, p. 239.

    Article  CAS  PubMed  Google Scholar 

  104. Chang, Y., Kim, H., Kahng, S.-J., and Kim, Y.-H., Axial coordination and electronic structure of diatomic NO, CO, and O2 molecules adsorbed onto co-tetraphenylporphyrin on Au(111), Ag(111), and Cu(111): A density-functional theory study, Dalton Trans., 2016, vol. 45, pp. 16673–16681. https://doi.org/10.1039/C6DT01965J

    Article  CAS  PubMed  Google Scholar 

  105. Oppeneer, P.M., Panchmatia, P.M., Sanyal, B., Eriksson, O., and Ali, M.E., Nature of the magnetic interaction between Fe-porphyrin molecules and ferromagnetic surfaces, Prog. Surf. Sci., 2009, vol. 84, pp. 18–24. https://doi.org/10.1016/j.progsurf.2008.12.001

    Article  CAS  Google Scholar 

  106. Poulos, T.L., Heme enzyme structure and function, Chem. Rev., 2014, vol. 114, no. 7, pp. 3919–3962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Clavian, L.M., Anil Kumar, K.V., Narayana Rao, D., Shihab, N.K., Sanjeev, G., and Rajesh Kumar, P.C., Influence of structural and morphological features of zinc (II)-tetraphenylporphyrin thin film on its third order optical nonlinearity at pico and nano second regimes, J. Lumin., 2022, vol. 246, p. 118835. https://doi.org/10.1016/j.jlumin.2022.118835

  108. Chang, M.H., Chang, Y.H., Kim, N.-Y., Kim, H., Lee, S.-H., Choi, M.-S., Kim, Y.-H., and Kahng, S.-J., Tuning and sensing spin interactions in Co-porphyrin/Au with NH3 and NO2 binding, Phys. Rev. B, 2019, vol. 100, no. 24, p. 245406. https://doi.org/10.1103/PhysRevB.100.245406

  109. Gottfried, J.M., Surface chemistry of porphyrins and phthalocyanines, Surf. Sci. Rep., 2015, vol. 70, no. 3, pp. 259–379. https://doi.org/10.1016/j.surfrep.2015.04.001

    Article  CAS  Google Scholar 

  110. Ol’khov, A.A., Lobanov, A.V., Bychkova, A.V., Ko-senko, R.Yu., Markin, V.S., Filatova, A.G., Ovchinnikov, V.A., and Iordanskii, A.L., Quantitation of iron(iii) ions complexed by tetraphenylporphyrin and its effect on the structure of ultrafine poly(3-hydroxybutyrate) fibers, Inorg. Mater.: Appl. Res., 2020, vol. 11, no. 4, pp. 886–892. https://doi.org/10.1134/S2075113320040309

    Article  Google Scholar 

  111. Shi, Y., Zhang, F., and Linhardt, R.J., Porphyrin-based compounds and their applications in materials and medicine, Dyes Pigm., 2021, vol. 188, p. 109136. https://doi.org/10.1016/j.dyepig.2021.109136

  112. Lobanov, A.V., Golubeva, E.N., and Mel’nikov, M.Ya., Photochemical synthesis and interconversions of novel organocopper (II) complexes in low-temperature matrices: An EPR study, Mendeleev Commun., 2010, vol. 20, no. 6, pp. 343–345.

    Article  CAS  Google Scholar 

  113. Bonartsev, A.P., Ol’khov, A.A., Khan, O.I., Kucherenko, E.L., Filatova, A.G., Zernova, Y.N., and Iordanskii, A.L., Matrices for tissue engineering based on ultrafine fibers and microparticles of poly(hydroxybutyrate), Inorg. Mater.: Appl. Res., 2021, vol. 12, no. 4, pp. 974–979. https://doi.org/10.1134/S2075113321040080

    Article  Google Scholar 

  114. Karpova, S.G., Chumakova, N.A., Lobanov, A.V., Olkhov, A.A., Vetcher, A.A., and Iordanskii, A.L., Evaluation and characterization of ultrathin poly(3-hydroxibutirate) fibers loaded with tetraphenylporphyrin and its complexes with Fe(III) and Sn(IV), Polymers, 2022, vol. 14, p. 610. https://doi.org/10.3390/polym14030610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ol’khov, A.A., Tyubaeva, P.M., Zernova, Yu.N., Kurnosov, A.S., Karpova, S.G., and Iordanskii, A.L., Structure and properties of biopolymeric fibrous materials based on polyhydroxybutyrate–metalloporphyrin complexes, Russ. J. Gen. Chem., 2021, vol. 91, no. 3, pp. 546–553.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ol’khov, A.A., Lobanov, A.V., Karpova, S.G., Bychkova, A.V., Artyukh, A.A., Goloshchapov, A.N., and Iordanskii, A.L., Effect of the addition of iron(iii) tetraphenylporphyrin complex on the structure of poly(3-hydroxybutyrate) fibers prepared by electrospinning, Russ. J. Appl. Chem., 2019, vol. 92, no. 4, pp. 505–516. https://doi.org/10.1134/S1070427219040062

    Article  Google Scholar 

  117. Tyubaeva, P., Varyan, I., Krivandin, A., Shatalova, O., Karpova, S., Lobanov, A., Olkhov, A., and Popov, A., The comparison of advanced electrospun materials based on poly(-3-hydroxybutyrate) with natural and synthetic additives, J. Funct. Biomater., 2022, vol. 13, p. 23. https://doi.org/10.3390/jfb13010023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tyubaeva, P., Varyan, I., Lobanov, A., Olkhov, A., and Popov, A., Effect of the hemin molecular complexes on the structure and properties of the composite electrospun materials based on poly(3-hydroxybutyrate), Polymers, 2021, vol. 13, no. 22, p. 4024. https://doi.org/10.3390/polym13224024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fatima, S.A., Jurair, H., Abbas, Q., and Arshalooz, J.R., Paediatric porphyria and human hemin: A treatment challenge in a lower middle income country, BMJ Case Rep., 2020, vol. 13, p. e232236.

  120. Boyarskii, M.D., Tarasov, Yu.V., Filippov, Yu.I., Sachivkina, N.P., and Stanishevkii, Ya.M., Preclinical hemocompatibility studies for implantable medical devices: Review and experimental research results, Razrab. Registr. Lekar. Sredstv, 2017, vol. 1, pp. 168–176.

    Google Scholar 

  121. GOST (State Standard) ISO 10993-4-2011: Medical Devices. Biological Evaluation of Medical Devices. Part 4. Selection of Tests for Interactions with Blood, 2013.

  122. Jordan, M., Mueller, M., Kortlepel, R., and Glasmacher, B., Modified chandler loop system for dynamic hemocompatibility testing of vascular implants, Proc. 48th DGBMT Annu. Conf. Biomedizinische Technik, 2014, pp. 28–30.

  123. van Oeveren, W., Tielliu, I.F., and de Hart, J., Comparison of modified chandler, roller pump, and ball valve circulation models for in vitro testing in high blood flow conditions: Application in thrombogenicity testing of different materials for vascular applications, Int. J. Biomater., 2012, vol. 2012, p. 673163. https://doi.org/10.1155/2012/673163

  124. Slee, J.B., Alferiev, I.S., Levy, R.J., and Stache-lek, S.J., The use of the ex vivo chandler loop apparatus to assess the biocompatibility of modified polymeric blood conduits, J. Visualized Exp., 2014, vol. 90, p. 51871. https://doi.org/10.3791/51871

    Article  CAS  Google Scholar 

  125. Boodram, S. and Evans, E., Use of leukocyte-depleting filters during cardiac surgery with cardiopulmonary bypass: A review, J. Extra-Corpor. Technol., 2008, vol. 40, no. 1, pp. 27–42.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Erlenkötter, A., Endres, P., Nederlof, B., et al., Score model for the evaluation of dialysis membrane hemocompatibility, Artif. Organs, 2008, no. 32, no. 12, pp. 962–969.

  127. Vasiliev, A.N., Niyazov, R.R., Gavrishina, E.V., Dranitsyna, M.A., and Kulichev, D.A., Problems of planning and conduct of preclinical trials in the Russian Federation, Remedium, 2017, no. 9, pp. 6–19. https://doi.org/10.21518/1561-5936-2017-9-6-18

  128. Denny, K.H. and Stewart, C.W., Acute, subacute, subchronic, and chronic general toxicity testing for preclinical drug development, in A Comprehensive Guide to Toxicology in Nonclinical Drug Development, Faqi, A.S., Ed., London: Academic, 2017, pp. 109–127. https://doi.org/10.1016/B978-0-12-803620-4.00005-0

    Book  Google Scholar 

  129. European Medicines Agency, Guideline on Strategies to Identify and Mitigate Risks for First-in-Human and Early Clinical Trials with Investigational Medicinal Products, Comm. Med. Prod. Human Use, 2017, EMEA/CHMP/SWP/28367/07 Rev. 1.

  130. Boersen, N., Lee, Th., and Hui, H.-W., Development of preclinical formulations for toxicology studies, in A Comprehensive Guide to Toxicology in Preclinical Drug Development, Faqi, A.S., Ed., London: Academic, 2013, pp. 69–86. https://doi.org/10.1016/B978-0-12-387815-1.00004-6

    Book  Google Scholar 

  131. Colerangle, J.B., Preclinical development of non-oncogenic drugs (small and large molecules), A Comprehensive Guide to Toxicology in Preclinical Drug Development, Faqi, A.S., Ed., London: Academic, 2013, pp. 517–542. https://doi.org/10.1016/B978-0-12-387815-1.00022-8

    Book  Google Scholar 

  132. York, M.J., Clinical pathology, A Comprehensive Guide to Toxicology in Preclinical Drug Development, Faqi, A.S., Ed., London: Academic, 2013, pp. 167–212. https://doi.org/10.1016/B978-0-12-387815-1.00008-3

    Book  Google Scholar 

  133. Abdi, M.M., Best practice in toxicological pathology, in A Comprehensive Guide to Toxicology in Nonclinical Drug Development, Faqi, A.S., Ed., London: Academic, 2017, pp. 375–406. https://doi.org/10.1016/B978-0-12-803620-4.00015-3

    Book  Google Scholar 

  134. Prisakar, V.I., Buracheva, S.A., Gidirim, G.P., Prisekaru, I.V., Tsapkov, V.I., et al., Results of preclinical and clinical trials of a new antiseptic, Epidemiol. Infekts. Bolezni, 2011, vol. 16, no. 5, pp. 22–26. https://doi.org/10.17816/EID40562

    Article  Google Scholar 

  135. Fiore, M., Bruschi, A., Giannini, C., Morante, L., Rondinella, C., Filippini, M., Sambri, A., and De Paolis, M., Is silver the new gold? A systematic review of the preclinical evidence of its use in bone substitutes as antiseptic, Antibiotics, 2022, vol. 11, no. 8, p. 995. https://doi.org/10.3390/antibiotics11080995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Norman, G., Christie, J., Liu, Z., et al., Antiseptics for burns, Cochrane Database Syst. Rev., 2017, vol. 7, no. 7, p. CD011821. https://doi.org/10.1002/14651858.CD011821.pub2

  137. van Hengel, I.A.J., Putra, N.E., Tierolf, M.W.A.M., Minneboo, M., Fluit, A.C., Fratila-Apachitei, L.E., Apachitei, I., and Zadpoor, A.A., Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria, Acta Biomater., 2020, vol. 107, pp. 325–337. https://doi.org/10.1016/j.actbio.2020.02.044

    Article  CAS  PubMed  Google Scholar 

  138. Kälicke, T., Schierholz, J., Schlegel, U., Frangen, T.M., Köller, M., Printzen, G., Seybold, D., Klöckner, S., Muhr, G., and Arens, S., Effect on infection resistance of a local antiseptic and antibiotic coating on osteosynthesis implants: An in vitro and in vivo study, J. Orthop. Res., 2006, vol. 24, no. 8, pp. 1622–1640. https://doi.org/10.1002/jor.20193

    Article  CAS  PubMed  Google Scholar 

  139. Pajor, K., Michalicha, A., Belcarz, A., Pajchel, L., Zgadzaj, A., Wojas, F., and Kolmas, J., Antibacterial and cytotoxicity evaluation of new hydroxyapatite-based granules containing silver or gallium ions with potential use as bone substitutes, Int. J. Mol. Sci., 2022, vol. 23, no. 13, p. 7102. https://doi.org/10.3390/ijms23137102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kolmas, J., Groszyk, E., and Kwiatkowska-Różycka, D., Substituted hydroxyapatites with antibacterial properties, Biomed. Res. Int., 2014, vol. 2014, p. 178123. https://doi.org/10.1155/2014/178123

  141. Mariano, L.C., Fernandes, M.H.R., and Gomes, P.S., Antimicrobial biomaterials for the healing of infected bone tissue: A systematic review of microtomographic data on experimental animal models, J. Funct. Biomater., 2022, vol. 13, no. 4, p. 193. https://doi.org/10.3390/jfb13040193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Krasowski, G., Migdał, P., Woroszyło, M., et al., The assessment of activity of antiseptic agents against biofilm of Staphylococcus aureus measured with the use of processed microscopic images, Int. J. Mol. Sci., 2022, vol. 23, no. 21, p. 13524. https://doi.org/10.3390/ijms232113524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bernardo, T.H.L., Santos Veríssimo, R.C.S., Alvino, V., Araujo, M.G.S., Pires dos Santos, R.F.E., Viana, M.D.M., de Assis Bastos, M.L., Alexandre-Moreira, M.S., and de Araújo-Júnior, J.X., Antimicrobial analysis of an antiseptic made from ethanol crude extracts of P. granatum and E. uniflora in Wistar rats against Staphylococcus aureus and Staphylococcus epidermidis, Sci. World J., 2015, vol. 2015, p. 751791. https://doi.org/10.1155/2015/751791

  144. Barreto, R., Barrois, B., Lambert, J., Malhotra-Kumar, S., Santos-Fernandes, V., and Monstrey, S., Addressing the challenges in antisepsis: Focus on povidone iodine, Int. J. Antimicrob. Agents, 2020, vol. 56, no. 3, p. 106064. https://doi.org/10.1016/j.ijantimicag.2020.106064

  145. Nozdrin, V.I., Piavchenko, G.A., Ivanova, M.E., Guzev, K.S., and Kuznetsov, S.L., Evaluation of pharmacokinetical parameters of phenol, a component of antiseptic Dorogov’s stimulator 3 fraction paste, Ra-zrab. Registr. Lekar. Sredstv, 2019, vol. 8, no. 3, pp. 57–61. https://doi.org/10.33380/2305-2066-2019-8-3-57-61

    Article  CAS  Google Scholar 

  146. Muñoz-Bonilla, A., Echeverria, C., Sonseca, Á., Arrieta, M.P., and Fernández-García, M., Bio-based polymers with antimicrobial properties towards sustainable development, Materials, 2019, vol. 12, no. 4, p. 641. PMID 30791651. PMCID PMC6416599.https://doi.org/10.3390/ma12040641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mahira, S., Jain, A., Khan, W., and Domb, A.J., Antimicrobial materials—an overview, in Antimicrobial Materials for Biomedical Applications, Domb, A.J., Kunduru, K.R., and Farah, Sh., Eds., Royal Soc. Chem., 2019, ch. 1, pp. 1–37. https://doi.org/10.1039/9781788012638-00001

  148. Bustamante-Torres, M., Arcentales-Vera, B., Estrella-Nuñez, J., Yánez-Vega, H., and Bucio, E., Antimicrobial activity of composites-based on biopolymers, Macromol, 2022, vol. 2, pp. 258–283.https://doi.org/10.3390/macromol2030018

    Article  CAS  Google Scholar 

  149. Cherednichenko, K., Kopitsyn, D., Batasheva, S., and Fakhrullin, R., Probing antimicrobial halloysite/biopolymer composites with electron microscopy: Advantages and limitations, Polymers, 2021, vol. 13, p. 3510. https://doi.org/10.3390/polym13203510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Theuretzbacher, U., Outterson, K., Engel, A., et al., The global preclinical antibacterial pipeline, Nat. Rev Microbiol., 2020, vol. 18, pp. 275–285. https://doi.org/10.1038/s41579-019-0288-0

    Article  CAS  PubMed  Google Scholar 

  151. Antibacterial Agents in Preclinical Development: An Open Access Database, Geneva: World Health Organ., 2019, WHO/EMP/IAU/2019.12. Licence CC B-Y-NC-SA 3.0 IGO.

  152. Brooks, B.D., Brooks, A.E., and Grainger, D.W., Antimicrobial medical devices in preclinical development and clinical use, in Biomaterials Associated Infection, Moriarty, T., Zaat, S., and Busscher, H., Eds., New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-1031-7_13

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. M. Tyubaeva, A. A. Popov or A. A. Olkhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyubaeva, P.M., Popov, A.A. & Olkhov, A.A. Traditional and New Approaches to the Creation of Biomedical Materials Based on Polyhydroxyalkanoates with Antimicrobial Activity. Inorg. Mater. Appl. Res. 14, 1165–1185 (2023). https://doi.org/10.1134/S2075113323050465

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323050465

Keywords:

Navigation