Skip to main content
Log in

Synthesis, Structure, and Properties of Diboride Solid Solutions (Hf1 – xTax)B2

  • GENERAL PURPOSE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Porous sintered solid solutions (Hf1 – хTaх)B2 were synthesized from elements by self-propagating high-temperature synthesis and were then ground in a ball mill to fraction d50 < 10 μm. Compacts were hot-pressed from single-phase solid solutions of various stoichiometries (Hf1 – хTaх)B2, and their structure and properties were studied. The constructed dependences of the unit cell parameters on the parameter x confirmed that they obey Vegard’s law. Analysis of the microstructure by scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy confirmed the existence of a region of single-phase solutions between the HfВ2 and TaB2 phases. Lamellas made of (Hf0.8Ta0.2)B2 and (Hf0.6Ta0.4)B2 compacts were studied by transmission electron microscopy. It was determined that, with an increase in the tantalum content, the size of subgrains decreases to 0.2–1 μm, which correlates with the size of coherent scattering regions. The mechanical properties of the single-phase solid solutions were measured. It was shown that the solid solutions of the compositions (Hf0.8Ta0.2)B2 and (Hf0.6Ta0.4)B2 have record-high values of hardness (63–70 GPa) and elastic modulus (550–587 GPa). The temperature dependence of the electrical resistance was constructed, and the heat capacity, thermal diffusivity, and thermal conductivity were determined in over a wide range of compositions of solid solutions (Hf1 – xTax)B2, where x = 0–0.9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Samsonov, G.V., Serebryakova, T.I., and Neronov, V.A., Boridy (Borides), Moscow: Atomizdat, 1975.

    Google Scholar 

  2. Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc., 2007, vol. 90, no. 5, pp. 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x

    Article  CAS  Google Scholar 

  3. Lundstroem, T., Structure, defects, and properties of some refractory borides, Pure Appl. Chem., 1985, vol. 57, no. 10, pp. 1383–1390. https://doi.org/10.1351/pac198557101383

    Article  CAS  Google Scholar 

  4. Justin, J.-F. and Jankowiak, A., Ultra high temperature ceramics: Densification, properties and thermal stability, J. Aerosp., 2011, no. 3, pp. 1–11. https://hal. archives-ouvertes.fr/hal-01183657/document

  5. Deligoz, E.K. and Colakoglu, Y.O., Lattice dynamical and thermodynamical properties of HfB2 and TaB2 compounds, Comput. Mater. Sci., 2010, vol. 47, no. 4, pp. 875–880. https://doi.org/10.1016/j.commatsci.2009.11.017

    Article  CAS  Google Scholar 

  6. Grimvall, G. and Guillermet, A.F., Phase stability properties of transition metal diborides, AIP Conf. Proc., 1991, vol. 231, pp. 423–430. https://doi.org/10.1063/1.40811

    Article  CAS  Google Scholar 

  7. Zhang, G.-J., Ni, D.-W., Zou, J., Liu, H.-T., et al., Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—A review, J. Eur. Ceram. Soc., 2018, vol. 38, no. 2, pp. 371–389. https://doi.org/10.1016/j.jeurceramsoc.2017.09.012

    Article  CAS  Google Scholar 

  8. Opila, E.J., Levine, S.R., and Lorincz, J., Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions, J. Mater. Sci., 2004, vol. 39, pp. 5969–5977. https://doi.org/10.1023/B:JMSC.0000041693.32531.d1

    Article  CAS  Google Scholar 

  9. Opeka, M.M., Talmy, I.G., Wuchina, E.J., et al., Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds, J. Eur. Ceram. Soc., 1999, vol. 19, nos. 13–14, pp. 2405–2414. https://doi.org/10.1016/S0955-2219(99)00129-6

  10. Shein, I.R. and Ivanovskii, A.L., The band structure of hexagonal diborides ZrB2, VB2, NbB2, and TaB2 in comparison with superconducting MgB2, Phys. Solid State, 2002, vol. 44, no. 10, pp. 1833–1839. https://doi.org/10.1134/1.1514768

    Article  CAS  Google Scholar 

  11. Berkowitz-Mattuck, J.B., High temperature oxidation: III. Zirconium and hafnium diborides, J. Electrochem. Soc., 1966, vol. 113, no. 9, pp. 908–914. https://doi.org/10.1149/1.2424154

    Article  CAS  Google Scholar 

  12. Telle, R., Sigl, L. S., and Takagi, K., Boride-based hard materials, in Handbook of Ceramic Hard Materials, Riedel, R., Ed., Weinheim: Wiley-VCH, 2000, ch. 7, pp. 802–945. https://doi.org/10.1002/9783527618217.ch22

    Book  Google Scholar 

  13. Zhang, X., Hilmas, G.E., and Fahrenholtz, W.G., Synthesis, densification, and mechanical properties of TaB2, J. Mater. Lett., 2008, vol. 62, no. 27, pp. 4251–4253. https://doi.org/10.1016/j.matlet.2008.06.052

    Article  CAS  Google Scholar 

  14. Mallik, M., Kailath, A.J., Ray, K.K., and Mitra, R., Electrical and thermophysical properties of ZrB2 and HfB2 based composites, J. Eur. Ceram. Soc., 2012, vol. 32, no. 10, pp. 2545–2555. https://doi.org/10.1016/j.jeurceramsoc.2012.02.013

    Article  CAS  Google Scholar 

  15. Johnson, S.M., Gasch, M., Leiser, D., et al., Development of new TPS at NASA Ames research center, Proc. 15th AlAA Int. Space Planes and Hypersonic Systems and Technologies Conf., Dayton, Ohyo, April 28–May 1, 2008, AIAA 2008-2560. https://doi.org/10.2514/6.2008-2560

  16. Pulci, G., Tului, M., Tirillò, J., Marra, F., Lionetti, S., and Valente, T., High temperature mechanical behavior of UHTC coatings for thermal protection of re-entry vehicles, J. Therm. Spray Technol., 2011, vol. 20, nos. 1–2, pp. 139–144. https://doi.org/10.1007/s11666-010-9578-9

  17. Wuchina, E., Opeka, M., Causey, S., et al., Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx and αHf(N), J. Mater. Sci., 2004, vol. 39, pp. 5939–5949. https://doi.org/10.1023/B:JMSC.0000041690.06117.34

    Article  CAS  Google Scholar 

  18. Nasseri, M.M., Comparison of HfB2 and ZrB2 behaviors for using in nuclear industry, Ann. Nucl. Energy, 2018, vol. 114, pp. 603–606. https://doi.org/10.1016/j.anucene.2017.12.060

    Article  CAS  Google Scholar 

  19. Borovinskaya, I.P., Merzhanov, A.G., Novikov, N.P., and Filonenko, A.K., Gasless combustion of mixtures of transition metal powders with boron, Fiz. Goren. Vzryva, 1974, vol. 18, no. 1, pp. 3–15. https://www.sibran.ru/upload/iblock/c2a/c2aa477cbbdaef87045debbd55f1fe66.pdf

    Google Scholar 

  20. Kurbatkina, V.V., Patsera, E.I., Levashov, E.A., and Timofeev, A.N., Self-propagating high-temperature synthesis of refractory boride ceramics (Zr,Ta)B2 with superior properties, J. Eur. Ceram. Soc., 2018, vol. 38, no. 4, pp. 1118–1127. https://doi.org/10.1016/j.jeurceramsoc.2017.12.031

    Article  CAS  Google Scholar 

  21. Kurbatkina, V.V., Patsera, E.I., and Levashov, E.A., Combustion synthesis of ultra-high-temperature materials based on (Hf,Ta)B2. Part 1: The mechanisms of combustion and structure formation, Ceram. Int., 2019, vol. 45, no. 3, pp. 4067–4075. https://doi.org/10.1016/j.ceramint.2018.10.113

    Article  CAS  Google Scholar 

  22. Kurbatkina, V.V., Patsera, E.I., Levashov, E.A., et al., Combustion synthesis of ultra-high-temperature materials based on (Hf,Ta)B2. Part 2. Structure, mechanical and thermophysical properties of consolidated ceramics based on (Hf,Ta)B2, Ceram. Int., 2019, vol. 45, no. 3, pp. 4076–4083. https://doi.org/10.1016/j.ceramint.2018.10.165

    Article  CAS  Google Scholar 

  23. Licheri, R., Orru, R., Musa, C., et al., Spark plasma sintering of UHTC powders obtained by self-propagating high-temperature synthesis, J. Mater. Sci., 2008, vol. 43, no. 19, pp. 6406–6413. https://doi.org/10.1007/s10853-008-2630-1

    Article  CAS  Google Scholar 

  24. Licheri, R., Orrù, R., Musa, C., et al., Spark plasma sintering of ZrB2- and HfB2-based ultra high temperature ceramics prepared by SHS, Int. J. Self-Propag. High-Temp. Synth., 2008, vol. 18, no. 1, pp. 15–24. https://doi.org/10.3103/S106138620901004X

    Article  CAS  Google Scholar 

  25. Yan, Z., Tan, D.-W., Guo, W.-M., et al., Improvement of densification and microstructure of HfB2 ceramics by Ta/Ti substitution for Hf, J. Am. Ceram. Soc., 2020, vol. 103, no. 1, pp. 103–111. https://doi.org/10.1111/jace.16709

    Article  CAS  Google Scholar 

  26. Shelekhov, E.V. and Sviridova, T.A., Programs for XHray analysis of polycrystals, Met. Sci. Heat Treat., 2000, vol. 42, no. 8, pp. 309–313. https://doi.org/10.1007/BF02471306

    Article  CAS  Google Scholar 

  27. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst., 1969, vol. 2, pp. 65–71. https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  28. Petrzhik, M.I. and Levashov, E.A., Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing, Crystallogr. Rep., 2007, vol. 52, no. 6, pp. 966–974. https://doi.org/10.1134/S1063774507060065

    Article  CAS  Google Scholar 

  29. Vorotilo, S., Sidnov, K., Kurbatkina, V.V., Loginov, P.A., Patsera, E.I., Sviridova, T.A., Lobova, T.A., Levashov, E.A., and Klechkovskay, V.V., Super-hardening and localized plastic deformation behaviors in ZrB2–TaB2 ceramics, J. Alloys Compd., 2022, vol. 901, p. 163368. https://doi.org/10.1016/j.jallcom.2021.163368

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation under a state assignment (project no. 0718-2020-0034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kurbatkina.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbatkina, V.V., Patsera, E.I., Sviridova, T.A. et al. Synthesis, Structure, and Properties of Diboride Solid Solutions (Hf1 – xTax)B2. Inorg. Mater. Appl. Res. 14, 1312–1320 (2023). https://doi.org/10.1134/S2075113323050210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323050210

Keywords:

Navigation