Skip to main content
Log in

Development of Thermal Rolling Regimes of Low-Alloy Arc Steel with Quasi-Homogeneous Ferrite-Bainitic Structure

  • METAL SCIENCE. METALLURGY
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

In this work, the kinetics of the growth of austenite grains upon heating, the features of the processes of dynamic and static recrystallization occurring at various temperature-deformation modes of plastic deformation are investigated. Phase transformations have been studied during continuous cooling of hot-deformed austenite in low-alloy Arc steel with a yield point of at least 420 MPa. The studies carried out made it possible to determine the thermal deformation parameters that ensure the formation of a finely dispersed homogeneous ferrite-bainitic structure, on the basis of which technological recommendations for industrial production were developed and sheet products were manufactured. Presented are the structure and properties of sheet metal from shipbuilding Arc steel of strength category of 420 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kazakov, A.A., Kiselev, D.V., Kazakova, E.I., Kurochkina, O.V., Khlusova, E.I., and Orlov, V.V., Effect of structural anizotropy in ferrite-bainite skelp steeles on the level of their mechanical properties after thermomechanical treatment, Chern. Met., 2010, no. 6, pp. 7–13.

  2. Kichkina, A.A., Matrosov, M.Y., Efron, L.I., Klyukvin, M.B., and Golovanov, A.V., Effect of structural anisotropy of ferrite–bainite pipe steel on mechanical properties in tensile and impact bending tests, Metallurgist, 2011, vol. 54, art. ID 808. https://doi.org/10.1007/s11015-011-9379-5

  3. Nastich, S.Yu., Ferritic–bainitic structure and ductile fracture resistance of high-strength pipe steels, Russ. Metall. (Metally), 2013, vol. 2013, pp. 765–771. https://doi.org/10.1134/S0036029513100108

    Article  Google Scholar 

  4. Urtsev, V.N., Kornilov, V.L., Shmakov, A.V., Krasnov, M.L., Stekanov, P.A., Platov, S.I., Razumov, I.K., and Gornostyrev, Yu.N., Formation of the structural state of a high-strength low-alloy steel upon hot rolling and controlled cooling, Phys. Met. Metallogr., 2019, vol. 120, pp. 1233–1241. https://doi.org/10.1134/S0031918X19120160

    Article  CAS  Google Scholar 

  5. Pyshmintsev, I.Yu., Boryakova, A.N., Smirnov, M.A., and Dement’eva, N.V., Properties of low-carbon steels containing bainite in the structure, Metallurgist, 2009, vol. 53, pp. 735–742. https://doi.org/10.1007/s11015-010-9241-1

    Article  CAS  Google Scholar 

  6. Nastich, S.Yu., Effect of bainite component morphology on the microstructure of X70 low-alloyed steel on thick plate cold resistance, Metallurgist, 2012, vol. 56, pp. 196–204. https://doi.org/10.1007/s11015-012-9558-z

    Article  CAS  Google Scholar 

  7. Isasti, N., Jorge-Badiola, D., Taheri, M.L., and Uranga, P., Microstructural features controlling mechanical properties in Nb–Mo microalloyed steels. Part II: Impact toughness, Metall. Mater. Trans. A, 2014, vol. 45, pp. 4972–4982.

    Article  CAS  Google Scholar 

  8. Thridandapani, R.R., Misra, R.D.K., Mannering, T., Panda, D., and Jansto, S., The application of stereological analysis in understanding differences in toughness of V- and Nb-microalloyed steels of similar yield strength, Mater. Sci. Eng., A, 2006, vol. 422, nos. 1–2, pp. 285–291. https://doi.org/10.1016/j.msea.2006.02.022

  9. Hu, J., Du, L.X., Zang, M., Yin, S.J., Wang, Y.G., Qi, X.Y., Gao, X.H., and Misra, R.D.K., On the determining role of acicular ferrite in V–N microalloyed steel in increasing strength-toughness combination, Mater. Charact., 2016, vol. 118, pp. 446–453.

    Article  CAS  Google Scholar 

  10. Nastich, S.Yu. and Matrosov, M.Yu., High-strength pipe steel structure formation during thermomechanical treatment, Metallurgist, 2016, vol. 59, pp. 784–794. https://doi.org/10.1007/s11015-016-0174-1

    Article  CAS  Google Scholar 

  11. ND no. 2-020101-124. Pravila klassifikatsii i postroiki morskikh sudov. Chast’ XIII: Materialy (ND no. 2-020101-124. Rules for Classification and Construction of Seagoing Ships, Part XIII: Materials), St. Petersburg: Ross. Morsk. Registr Sudokhod., 2020.

  12. Gusev, M.A., Il’in, A.V., and Larionov, A.V., Certification of shipbuilding materials for ships operating in the Arctic, Sudostroenie, 2014, no. 5 (816), pp. 39–43.

  13. Filin, V.Yu., Quality control of steels for large-sized welded structures of the Arctic shelf: Application of Russian and foreign requirements, Inorg. Mater.: Appl. Res., 2019, vol. 10, pp. 1492–1503. https://doi.org/10.1134/S207511331906008X

    Article  Google Scholar 

  14. Sych, O.V., Scientific and technological bases for developing cold-resistant steel with a guaranteed yield strength of 315–750 MPa for Arctic conditions. Part 1: Alloying principles and requirements for sheet product structure, Inorg. Mater.: Appl. Res., 2019, vol. 10, pp. 1265–1281. https://doi.org/10.1134/S207511331906025X

    Article  Google Scholar 

  15. Sych, O.V. and Khlusova, E.I., Relationship of structure parameters with performance characteristics of shipbuilding steels of different alloying, Inorg. Mater.: Appl. Res., 2021, vol. 12, pp. 1439–1449. https://doi.org/10.1134/S2075113321060253

    Article  Google Scholar 

  16. Kazakov, A.A., Kiselev, D.V., Sych, O.V., and Khlusova, E.I., Methodology for assessing the microstructural heterogeneity in thickness of sheet products made of cold-resistant low-alloy steel for Arctic applications, Chern. Met., 2020, no. 9, pp. 11–19.

  17. Kazakov, A.A., Kiselev, D.V., Sych, O.V., and Khlusova, E.I., Quantitative assessment of structural inhomogeneity in cold-resistant low-alloy steel sheets for interpretation of technological features of its manufacturing, Chern. Met., 2020, no. 11, pp. 4–14.

  18. de Andrés, G.C., Bartolomé, M.J., Capdevila, C., San Martín, D., Caballero, F.G., and López, V., Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels, Mater. Charact., 2001, vol. 46, no. 5, pp. 389–398. https://doi.org/10.1016/S1044-5803(01)00142-5

    Article  Google Scholar 

  19. Zisman, A.A., Soshina, T.V., and Khlusova, E.I., Maps of structure changes in austenite of low carbon steel 09CrNi2MoCuV during hot deformation and their use to improve industrial technologies, Inorg. Mater.: Appl. Res., 2014, vol. 5, pp. 570–577. https://doi.org/10.1134/S2075113314060112

    Article  Google Scholar 

  20. Medina, S.F. and Hernandez, C.A., General expression of the Zener–Holloman parameter as a function of the chemical composition of low alloy and microalloyed steels, Acta Mater., 1996, vol. 44, no. 1, pp. 137–148.

    Article  CAS  Google Scholar 

  21. Fernandez, A.I., Uranga, P., Lopez, B., and Rodrigues-Ibabe, J.M., Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steels, Mater. Sci. Eng., 2003, vol. 361, pp. 367–376.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Sych.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sych, O.V., Korotovskaya, S.V., Khlusova, E.I. et al. Development of Thermal Rolling Regimes of Low-Alloy Arc Steel with Quasi-Homogeneous Ferrite-Bainitic Structure. Inorg. Mater. Appl. Res. 13, 1459–1468 (2022). https://doi.org/10.1134/S2075113322060247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322060247

Keywords:

Navigation