Skip to main content
Log in

Synthesis of Calcium Pyrophosphate Powders from Phosphoric Acid and Calcium Carbonate

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Powders of calcium pyrophosphate Ca2P2O7 of γ- and β-modifications have been obtained using the thermal conversion of brushite CaHPO4⋅2H2O synthesized from phosphoric acid H3PO4 and calcium carbonate CaCO3 at a molar ratio P/Ca = 1.1. The resulting powders can be used to create various functional materials, including biocompatible and bioresorbable materials for the treatment of bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lee, J.H., Chang, B.S., Jeung, U.O., Park, K.W., Kim, M.S., and Lee, C.K., The first clinical trial of beta-calcium pyrophosphate as a novel bone graft extender in instrumented posterolateral lumbar fusion, Clin. Orthop. Surg., 2011, vol. 3, no. 3, pp. 238–244. https://doi.org/10.4055/cios.2011.3.3.238

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lin, F.H., Lin, C.C., Lu, C.M., Liu, H.C., Sun, J.S., and Wang, C.Y., Mechanical properties and histological evaluation of sintered β-Ca2P2O7 with Na4P2O7⋅10H2O addition, Biomaterials, 1995, vol. 16, no. 10, pp. 793–802. https://doi.org/10.1016/0142-9612(95)99642-Y

    Article  CAS  PubMed  Google Scholar 

  3. Ghantani, V.C., Dongare, M.K., and Umbarkar, S.B., Nonstoichiometric calcium pyrophosphate: A highly efficient and selective catalyst for dehydration of lactic acid to acrylic acid, RSC Adv., 2014, vol. 4, no. 63, pp. 33319–33326. https://doi.org/10.1039/c4ra06429a

    Article  CAS  Google Scholar 

  4. Bian, J.J., Kim, D.W., and Hong, K.S., Microwave dielectric properties of Ca2P2O7, J. Eur. Ceram. Soc., 2003, vol. 23, no. 14, pp. 2589–2592. https://doi.org/10.1016/S0955-2219(03) 00138-9

  5. Kaygili, O., Synthesis and characterization of paramagnetic Mn doped Ca2P2O7 ceramics by sol-gel method, J. Ceram. Process. Res., 2015, vol. 16, pp. 54–58. http://www.jcpr.or.kr/journal/download/pdf/1636

    Google Scholar 

  6. Munimasthani, S., Sarathkumar, S., Thampy, U.U., and Ravikumar, R.V.S.S.N., Structural and luminescence studies of Dy3+-activated cadmium calcium pyrophosphate, Appl. Phys. A, 2020, vol. 126, no. 1, art. ID 2. https://doi.org/10.1007/s00339-019-3180-x

    Article  CAS  Google Scholar 

  7. Li, L., Cao, J., Viana, B., Xu, S., and Peng, M., Site occupancy preference and antithermal quenching of the Bi2+ deep red emission in β-Ca2P2O7:Bi2+, Inorg. Chem., 2017, vol. 56, no. 11, pp. 6499–6506. https://doi.org/10.1021/acs.inorgchem.7b00564

    Article  CAS  PubMed  Google Scholar 

  8. Kohale, R.L., Shinde, K.N., Park, K., and Dhoble, S.J., Synthesis and luminescence properties of Eu2+ activated Ca2P2O7 pyrophosphate phosphor, J. Nanosci. Nanotechnol., 2014, vol. 14, no. 8, pp. 5976–5978. https://doi.org/10.1166/jnn.2014.8313

    Article  CAS  PubMed  Google Scholar 

  9. Pang, R., Li, C., Zhang, S., and Su, Q., Luminescent properties of a new blue long-lasting phosphor Ca2P2O7:Eu2+, Y3+, Mater. Chem. Phys., 2009, vol. 113, no. 1, pp. 215–218. https://doi.org/10.1016/j.matchemphys.2008.07.061

    Article  CAS  Google Scholar 

  10. Kolay, S., Basu, M., Sudarsan, V., and Tyagi, A.K., Blue light emitting Eu doped Ca2P2O7 and Ba2P2O7 particles synthesized at low temperatures, Solid State Sci., 2018, vol. 85, pp. 26–31.

    Article  CAS  Google Scholar 

  11. Khan, Z.S., Ingale, N.B., and Omanwar, S.K., Combustion synthesis and luminescence properties of α-Ca2P2O7:Eu3+, Dy3+, Mater. Today: Proc., 2015, vol. 2, no. 9, pp. 4384–4389. https://doi.org/10.1016/j.matchemphys.2008.07.061

    Article  CAS  Google Scholar 

  12. Hao, Z., Zhang, J., Zhang, X., Lu, S., Luo, Y., Ren, X., and Wang, X., Phase dependent photoluminescence and energy transfer in Ca2P2O7:Eu2+, Mn2+ phosphors for white LEDs, J. Lumin., 2008, vol. 128, nos. 5–6, pp. 941–944. https://doi.org/10.1016/j.jlumin.2007.11.035

  13. Kohale, R.L. and Dhoble, S.J., Optical performance of Ca2P2O7:Ce3+ pyrophosphate phosphor synthesized via modified solid state diffusion, J. Mol. Struct., 2018, vol. 1170, pp. 18–23. https://doi.org/10.1016/j.molstruc.2018.05.065

    Article  CAS  Google Scholar 

  14. Roman-Lopez, J., Lozano, I.B., Cruz-Zaragoza, E., Guzman Castañeda, J.I., and Díaz-Góngora, J.A.I., Synthesis of β-Ca2P2O7:Tb3+ to gamma radiation detection by thermoluminescence, Appl. Radiat. Isot., 2017, vol. 124, pp. 44–48. https://doi.org/10.1016/j.apradiso.2017.03.004

  15. Kim, D.W., An, J.S., and Cho, I.S., Effects of Mg and Sr co-addition on the densification and biocompatible properties of calcium pyrophosphate, Ceram. Int., 2018, vol. 44, no. 8, pp. 9689–9695. https://doi.org/10.1016/j.ceramint.2018.02.198

    Article  CAS  Google Scholar 

  16. Zhou, H., Hou, S., Zhang, M., Chai, H., Liu, Y., Bhaduri, S.B., Lei, Y., and Deng, L., Synthesis of β-TCP and CPP containing biphasic calcium phosphates by a robust technique, Ceram. Int., 2016, vol. 42, no. 9, pp. 11032–11038. https://doi.org/10.1016/j.ceramint.2016.03.246

    Article  CAS  Google Scholar 

  17. Safronova, T.V., Selezneva, I.I., Tikhonova, S.A., Kiselev, A.S., Davydova, G.A., Shatalova, T.B., Larionov, D.S., and Rau, J.V., Biocompatibility of biphasic α, β-tricalcium phosphate ceramics in vitro, Bioact. Mater., 2020, vol. 5, no. 2, pp. 423–427. https://doi.org/10.1016/j.bioactmat.2020.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Belyakov, A.V., Metody polucheniya neorganicheskikh nemetallicheskikh nanochastits (Methods for Obtaining Inorganic Nonmetallic Nanoparticles), Moscow: Mendeleev Univ. Chem. Technol., 2003. ISBN 5-7237-0409-5. https://www.elibrary.ru/item.asp?id=19610479

  19. Belyakov, A.V. and Bakunov, V.S., Structural evolution in ceramic technology and processing, Refract. Ind. Ceram., 2006, vol. 47, no. 1, pp. 48–52. https://doi.org/10.1007/s11148-006-0053-6

    Article  CAS  Google Scholar 

  20. Bakunov, V.S. and Belyakov, A.V., Ceramics technology as a process of energy accumulation/dissipation, Konstr. Kompoz. Mater., 2005, no. 2, pp. 5–18. https://www.elibrary.ru/item.asp?id=12000459

  21. Larionov, D.S., Kuzina, M.A., Evdokimov, P.V., Garshev, A.V., Orlov, N.K., and Putlyaev, V.I., Synthesis of calcium phosphate powders in nonaqueous media for stereolithography 3D printing, Russ. J. Inorg. Chem., 2020, vol. 65, no. 3, pp. 312–322. https://doi.org/10.1134/S0036023620030079

    Article  CAS  Google Scholar 

  22. Safronova, T.V., Putlyaev, V.I., Ivanov, V.K., Knot’ko, A.V., and Shatalova, T.B., Powders mixtures based on ammonium hydrophosphate and calcium carbonate for preparation of biocompatible porous ceramic in the CaO–P2O5 system, Refract. Ind. Ceram., 2016, vol. 56, no. 5, pp. 502–509. https://doi.org/10.1007/s11148-016-9877-x

    Article  CAS  Google Scholar 

  23. Khan, Z.S., Ingale, N.B., and Omanwar, S.K., Synthesis of thermoluminescence α-Ca2P2O7:Eu3+ bio-nanomaterial, Mater. Lett., 2015, vol. 158, pp. 143–146. https://doi.org/10.1016/j.matlet.2015.05.038

  24. Dosen, A. and Giese, R.F., Thermal decomposition of brushite, CaHPO4⋅2H2O to monetite CaHPO4 and the formation of an amorphous phase, Am. Mineral., 2011, vol. 96, nos. 2–3, pp. 368–373. https://doi.org/10.2138/am.2011.3544

  25. Mulongo-Masamba, R., El Kassri, T., Khachani, M., Arsalane, S., Halim, M., and El Hamidi, A., Synthesis and thermal dehydroxylation kinetic of anhydrous calcium phosphate monetite CaHPO4, J. Therm. Anal. Calorim., 2015, vol. 124, no. 1, pp. 171–180. https://doi.org/10.1007/s10973-015-5130-y

    Article  CAS  Google Scholar 

  26. Hamai, R., Toshima, T., Tafu, M., Masutani, T., and Chohji, T., Effect of anion for controlling the morphology of brushite particles. Effect of anions on morphology control of brushite particles, Key Eng. Mater., 2012, vols. 529–530, pp. 55–60. https://doi.org/10.4028/www.scientific.net/KEM.529-530.55

  27. Singh, S., Singh, V., Aggarwal, S., and Mandal, U., Synthesis of brushite nanoparticles at different temperatures, Chem. Pap., 2010, vol. 64, no. 4, pp. 491–498. https://doi.org/10.2478/s11696-010-0032-8

    Article  CAS  Google Scholar 

  28. Safronova, T.V., Putlyaev, V.I., Andreev, M.D., Filippov, Ya.Yu., Knotko, A.V., Shatalova, T.B., and Evdokimov, P.V., Synthesis of calcium phosphate powder from calcium lactate and ammonium hydrogen phosphate for the fabrication of bioceramics, Inorg. Mater., 2017, vol. 53, no. 8, pp. 859–868. https://doi.org/10.1134/S0020168517080143

    Article  CAS  Google Scholar 

  29. Rubini, K., Boanini, E., and Bigi, A., Role of aspartic and polyaspartic acid on the synthesis and hydrolysis of brushite, J. Funct. Biomater., 2019, vol. 10, no. 1, art. ID 11. https://doi.org/10.3390/jfb10010011

    Article  CAS  PubMed Central  Google Scholar 

  30. Lu, B.Q., Willhammar, T., Sun, B.B., Hedin, N., Gale, J.D., and Gebauer, D., Introducing the crystalline phase of dicalcium phosphate monohydrate, Nat. Commun., 2020, vol. 11, no. 1, pp. 1–8. https://doi.org/10.1038/s41467-020-15333-6

    Article  CAS  Google Scholar 

  31. Safronova, T.V., Sadilov, I.S., Chaikun, K.V., Shatalova, T.B., and Filippov, Ya.Yu., Synthesis of monetite from calcium hydroxyapatite and monocalcium phosphate monohydrate under mechanical activation conditions, Russ. J. Inorg. Chem., 2019, vol. 64, no. 9, pp. 1088–1094. https://doi.org/10.1134/S0036023619090171

    Article  CAS  Google Scholar 

  32. Djošić, M.S., Mišković-Stanković, V.B., Kačarević-Popović, Z.M., Jokić, B.M., Bibić, N., Mitrić, M., Milonjić, S.K., Jancic-Heinemann, R., and Stojanović, J., Electrochemical synthesis of nanosized monetite powder and its electrophoretic deposition on titanium, Colloids Surf., A, 2009, vol. 341, nos. 1–3, pp. 110–117. https://doi.org/10.1016/j.colsurfa.2009.03.046

  33. Tas, A.C., Monetite (CaHPO4) synthesis in ethanol at room temperature, J. Am. Ceram. Soc., 2009, vol. 92, no. 12, pp. 2907–2912. https://doi.org/10.1111/j.1551-2916.2009.03351.x

    Article  CAS  Google Scholar 

  34. Safronova, T.V., Putlayev, V.I., Bessonov, K.A., and Ivanov, V.K., Ceramics based on calcium pyrophosphate nanopowders, Process. Appl. Ceram., 2013, vol. 7, no. 1, pp. 9–14. https://doi.org/10.2298/PAC1301009S

    Article  CAS  Google Scholar 

  35. Safronova, T.V., Putlyaev, V.I., Kurbatova, S.A., Sha-talova, T.B., Larionov, D.S., Kozlov, D.A., and Evdokimov, P.V., Properties of amorphous calcium pyrophosphate powder synthesized via ion exchange for the preparation of bioceramics, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1177–1184. https://doi.org/10.1134/S0020168515110096

    Article  CAS  Google Scholar 

  36. Safronova, T.V., Kurbatova, S.A., Shatalova, T.B., Knotko, A.V., Yevdokimov, P.V., and Putlyayev, V.I., Calcium pyrophosphate powder for production of bioceramics synthesized from pyrophosphoric acid and calcium acetate, Inorg. Mater.: Appl. Res., 2017, vol. 8, pp. 118–125. https://doi.org/10.1134/S2075113317010348

    Article  Google Scholar 

  37. Mehdikhani, B. and Borhani, G.H., Synthesis nano bio-ceramic powder β-Ca2P2O7, J. Ceram. Process. Res., 2015, vol. 16, no. 3, pp. 308–312. http://www.jcpr.or.kr/journal/download/pdf/1683.

    Google Scholar 

  38. Safronova, T., Putlayev, V., Filippov, Y., Shatalova, T., Karpushkin, E., Larionov, D., Kazakova, G., and Shakhtarin, Y., Calcium phosphate powder synthesized from calcium acetate and ammonium hydrophosphate for bioceramics application, Ceramics, 2018, vol. 1, no. 2, pp. 375– 392. https://doi.org/10.3390/ceramics1020030

    Article  CAS  Google Scholar 

  39. Martin, R.I. and Brown, P.W., Phase equilibria among acid calcium phosphates, J. Am. Ceram. Soc., 2005, vol. 80, pp. 1263–1266. https://doi.org/10.1111/j.1151-2916.1997.tb02973.x

    Article  Google Scholar 

  40. Stepuk, A.A., Veresov, A.G., Putlyaev, V.I., and Tret’yakov, Y.D., The influence of \({\text{NO}}_{3}^{ - }\), CH3COO, and Cl ions and the morphology of calcium hydroxyapatite crystals, Dokl. Phys. Chem., 2007, vol. 412, no. 1, pp. 11–14. https://doi.org/10.1134/S0012501607010046

    Article  CAS  Google Scholar 

  41. Toshima, T., Hamai, R., Tafu, M., Takemura, Y., Fujita, S., Chohji, T., Tanda, S., Li, S., and Qin, G.W., Morphology control of brushite prepared by aqueous solution synthesis, J. Asian Ceram. Soc., 2014, vol. 2, no. 1, pp. 52–56. https://doi.org/10.1016/j.jascer.2014.01.004

    Article  Google Scholar 

  42. Safronova, T.V., Phase composition of ceramic based on calcium hydroxyapatite powders containing byproducts of the synthesis reaction, Glass Ceram., 2009, vol. 66, nos. 3–4, pp. 136–139. https://doi.org/10.1007/s10717-009-9130-x

  43. ICDD. PDF-4+ 2010 (Database), Kabekkodu, S., Ed., PA, USA: Int. Centre for Diffraction Data, Newtown Square, 2010. http://www.icdd.com/products/pdf2.htm

  44. McIntosh, A.O. and Jablonski, W.L., X-ray diffraction powder patterns of calcium phosphates, Anal. Chem., 1956, vol. 28, no. 9, pp. 1424–1427. https://doi.org/10.1021/ac60117a019

    Article  CAS  Google Scholar 

  45. Vaimakis, T.C., Pomonis, P.J., and Sdoukos, A.T., A detailed study of the condensation of the Ca(H2PO4)2⋅H2O–CaHPO4⋅2H2O system under thermal treatment, Therochim. Acta, 1990, vol. 168, pp. 103–113. https://doi.org/10.1016/0040-6031(90)80629-D

    Article  CAS  Google Scholar 

  46. Van Wazer, J.R., Phosphorus and Its Compounds, New York–London: Interscience, 1958.

  47. Voskresenskaya, N.K. and Sokolova, I.D., Condensed phosphates in the molten state, Russ. Chem. Rev., 1969, vol. 38, no. 10, pp. 862–872. https://doi.org/10.1070/RC1969v038n10ABEH001858

    Article  Google Scholar 

  48. Hill, W.L., Hendricks, S.B., Fox, E.J., and Cady, J.G., Acid pyro- and metaphosphates produced by thermal decomposition of monocalcium phosphate, Ind. Eng. Chem., 1947, vol. 39, no. 12, pp. 1667–1672. https://doi.org/10.1021/ie50456a031

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (grants no. 18‑53‑00034 and no. 18‑29‑11079) and the Belarusian Foundation for Basic Research (grant no. X18P-63.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Safronova.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronova, T.V., Shatalova, T.B., Tikhonova, S.A. et al. Synthesis of Calcium Pyrophosphate Powders from Phosphoric Acid and Calcium Carbonate. Inorg. Mater. Appl. Res. 12, 986–992 (2021). https://doi.org/10.1134/S2075113321040353

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321040353

Keywords:

Navigation