Skip to main content
Log in

Synthesis and Evaluation of Adsorption Properties of Reduced Graphene Oxide Hydro- and Aerogels Modified by Iron Oxide Nanoparticles

  • NEW TECHNOLOGIES OF PREPARATION AND TREATMENT OF MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The synthesis of a nanocomposite material based on graphene modified with iron oxide nanoparticles, which is an effective sorbent of organic pollutants contained in aqueous media, has been considered. The production of graphene by chemical reduction of graphene oxide (GO) is the most flexible and popular method for the synthesis of composite materials of various structures based on graphene. Chemical reduction of graphene oxide was carried out using gamma-lactone-2,3-dehydro-L-gulonic acid (ascorbic acid). The method of obtaining the composite under study includes processing the hydrogel obtained after the GO reduction in supercritical isopropanol, which makes it possible to obtain graphene aerogel containing nanoparticles of iron(II, III) oxide. The analysis of the specific surface and porosity of the obtained aerogel showed that the specific surface area of the aerogel was ~7 times higher as compared to the specific surface of the xerogel obtained by drying of the hydrogel under ordinary conditions in air. The diffractometric analysis of xerogel and aerogel samples suggests that, during supercritical drying in the organic fluid, the processes of iron hydroxide reduction to iron(II, III) oxide proceed. The sorption capacity of the obtained hydro- and aerogel was studied by the extraction of methylene blue organic dye from aqueous solutions in a static mode (batch method). The results of the experiments showed that the maximum values of the sorption capacity for the methylene blue dye were 1370 and 1326 mg/g for the hydro- and aerogel, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Liang, L., Zhou, M., Li, K., and Jiang, L., Facile and fast polyaniline-directed synthesis of monolithic carbon cryogels from glucose, Microporous Mesoporous Mater., 2018, vol. 265, pp. 26–34.

    Article  CAS  Google Scholar 

  2. Narayanan, K.B., Choi, S.M., and Han, S.S., Biofabrication of Lysinibacillus sphaericus-reduced graphene oxide in three-dimensional polyacrylamide/carbon nanocomposite hydrogels for skin tissue engineering, Colloids Surf., B, 2019, vol. 181, pp. 539–548.

    Article  CAS  Google Scholar 

  3. Chi, H.Z., Wu, Y.Q., Shen, Y.K., Zhang, C., Xiong, Q., and Qin, H., Electrodepositing manganese oxide into a graphene hydrogel to fabricate an asymmetric supercapacitor, Electrochim. Acta, 2018, vol. 289, pp. 158–167.

    Article  CAS  Google Scholar 

  4. Han, B., Zhang, E., Cheng, G., Zhang, L., Wang, D., and Wang, X., Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal, Chem. Eng. J., 2018, vol. 338, pp. 734–744.

    Article  CAS  Google Scholar 

  5. Guilminot, E., Gavillon, R., Chatenet, M., Berthon-Fabry, S., Rigacci, A., and Budtova, T., New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis, J. Power Sources, 2008, vol. 185, pp. 717–726.

    Article  CAS  Google Scholar 

  6. Wang, J. and Ellsworth, M.W., US Patent 20100144904, 2010.

  7. van Hoa, N, Quyen, T.T.H., van Hieu, N., Ngoc, T.Q., Thinh, P.V., Dat, P.A., and Nguyen, H.T.T., Three-dimensional reduced graphene oxide-grafted polyaniline aerogel as an active material for high performance supercapacitors, Synth. Met., 2017, vol. 223, pp. 192–198.

    Article  CAS  Google Scholar 

  8. Tang, G., Jiang, Z.-G., Li, X., Zhang, H.-B., Dasari, A., and Yu, Z.-Z., Three dimensional graphene aerogels and their electrically conductive composites, Carbon, 2014, vol. 77, pp. 592–599.

    Article  CAS  Google Scholar 

  9. Babkin, A.V., Neskoromnaya, E.A., Burakov, A.E., and Burakova, I.V., Kinetics sorption of copper(II) ions from aqueous solutions with grapheme oxide, Vestn. Tambovsk. Gos. Tekh. Univ., 2018, vol. 24, no. 1, pp. 79–86.

    CAS  Google Scholar 

  10. Li, Y., Zhang, R., Tian, X., Yang, C., and Zhou, Z., Facile synthesis of Fe3O4 nanoparticles decorated on 3D graphene aerogels as broad-spectrum sorbents for water treatment, Appl. Surf. Sci., 2016, vol. 369, pp. 11–18.

    Article  CAS  Google Scholar 

  11. Shan, S., Tang, H., Zhao, Y., Wang, W., and Cui, F., Highly porous zirconium-crosslinked grapheme oxide/alginate aerogel beads for enhanced phosphate removal, Chem. Eng. J., 2019, vol. 359, pp. 779–789.

    Article  CAS  Google Scholar 

  12. Chen, L., Feng, S., Zhao, D., Chen, S., and Chen, C., Efficient sorption and reduction of U(VI) on zero-valent iron–polyaniline–graphene aerogel ternary composite, J. Colloid Interface Sci., 2017, vol. 490, pp. 197–206.

    Article  CAS  Google Scholar 

  13. Yang, F., Xu, M., Bao, S.-J., Wei, H., and Chai, H., Selfassembled hierarchical graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage, Electrochim. Acta, 2014, vol. 137, pp. 381–387.

    Article  CAS  Google Scholar 

  14. Lee, Y.J., Park, H.W., Kim, G.-P., Yi, J., and Song, I.K., Supercapacitive electrochemical performance of graphene-containing carbon aerogel prepared using polyethyleneimine-modified graphene oxide, Curr. Appl. Phys., 2013, vol. 13, no. 5, pp. 945–949.

    Article  Google Scholar 

  15. Xu, Y., Sheng, K., Li C., and Shi, G., Self-assembled grapheme hydrogel via a one-step hydrothermal process, ACS Nano, 2010, vol. 4, no. 7, pp. 4324–4330.

    Article  CAS  Google Scholar 

  16. Ma, T., Chang, P.R., Zheng, P., Zhao, F., and Ma, X., Porous graphene gels: preparation and its electrochemical properties, Mater. Chem. Phys., 2014, vol. 146, pp. 446–451.

    Article  CAS  Google Scholar 

  17. Ding, M., de Jong, B.H.W.S., Roosendaal, S.J., and Vredenberg, A., XPS studies on the electronic structure of bonding between solid and solutes: adsorption of arsenate, chromate, phosphate, Pb2+, and Zn2+ ions on amorphous black ferric oxyhydroxide, Geochim. Cosmochim. Acta, 2000, vol. 64, no. 7, pp. 1209–1219.

    Article  CAS  Google Scholar 

  18. Traina, S.J., Surface complexation modeling: hydrous ferric oxide, Geochim. Cosmochim. Acta, 1996, vol. 60, no. 21, pp. 4291–4292.

    Google Scholar 

  19. Burstein, G.T., The iron oxides: structure, properties, reactions, occurrence and uses, Corros. Sci., 1997, vol. 39, no. 8, pp. 1499–1500.

    Article  CAS  Google Scholar 

  20. Wang, Y., Jin, Y., and Jia, M., Ultralong Fe3O4 nano-wires embedded graphene aerogel composite anodes for lithium ion batteries, Mater. Lett., 2018, vol. 228, pp. 395–398.

    Article  CAS  Google Scholar 

  21. Long, Z., Zhan, Y., Li, F., Wan, X., He, Y., Hou, C., and Hu, H., Hydrothermal synthesis of graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite for removal of Cu(II) and methylene blue, J. Nanopart. Res., 2017, vol. 19, p. 318.

    Article  Google Scholar 

  22. Rosaiah, P., Zhu, J., Zhang, L., Hussain, O.M., and Qiu, Y., Synthesis of iron oxide embedded reduced grapheme oxide composites with enhanced electrochemical performance as Li-ion battery anodes, J. Electroanal. Chem., 2018, vol. 834, pp. 173–179.

    Article  Google Scholar 

  23. Denison, M.I.J., Raman, S., Duraisamy, N., Thangavelu, R.M., Riyaz, S.U.M., Gunasekaran, D., and Krishnan, K., Preparation, characterization and application of antibody-conjugated magnetic nanoparticles in the purification of begomovirus, RSC Adv., 2015, vol. 5, no. 121, pp. 99820–99831.

    Article  CAS  Google Scholar 

  24. Othman, N.H., Alias, N.H., Shahruddin, M.Z., Abu Bakar, N.F., Nik Him, N.R., and Lau, W.J., Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide, J. Environ. Chem. Eng., 2018, vol. 6, no. 2, pp. 2803–2811.

    Article  CAS  Google Scholar 

  25. Liu, J., Liu, G., and Liu, W., Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions, Chem. Eng. J., 2014, vol. 257, pp. 299–308.

    Article  CAS  Google Scholar 

  26. Deng, J.-H., Zhang, X.-R., Zeng, G.-M., Gong, J.-L., Niu, Q.-Y., and Liang, J., Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent, Chem. Eng. J., 2013, vol. 226, pp. 189–200.

    Article  CAS  Google Scholar 

  27. Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., et al., Adsorption of methylene blue from aqueous solution by graphene, Colloids Surf., B, 2012, vol. 90, pp. 197–203.

    Article  CAS  Google Scholar 

  28. Ramesha, G.K., Vijaya Kumara, A., Muralidhara, H.B., and Sampath, S., Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes, J. Colloid Interface Sci., 2011, vol. 361, no. 1, pp. 270–277.

    Article  CAS  Google Scholar 

  29. Buslaeva, E.Yu., Supercritical isopropanol as a reagent in organic, organometallic, inorganic chemistry and nanotechnology, Radioelektron., Nanosist.,Inf. Tekhnol., 2012, vol. 4, no. 2, pp. 38–49.

    Google Scholar 

  30. Ivicheva, S.N., Kargin, Yu.F., and Sakharov, S.G., Manufacture of opal-matrix functional nanocomposites by catalytic dehydrogenation of isopropanol under supercritical conditions, Russ. J. Inorg. Chem., 2014, vol. 59, no. 10, pp. 1077–1086.

    Article  CAS  Google Scholar 

  31. Gubin, S.P. and Buslaeva, E.Yu., Supercritical isopropanol as a reducing agent for inorganic oxides, Sverhkrit. Flyuidy: Teor. Prakt., 2009, vol. 4, no. 4, pp. 73–96.

    Google Scholar 

  32. Ivicheva, S.N., Kargin, Yu.F., Ashmarin, A.A., Shvorneva, L.I., and Ivanov, V.K., Nanocomposites based on opal matrices and iron subgroup metal nanoparticles, Russ. J. Inorg. Chem., 2012, vol. 57, no. 11, pp. 1419–1427.

    Article  CAS  Google Scholar 

  33. Gubin, S.P., Supercritical hydrogen-free and catalyst-free hydrogenation: possibilities of the method, Dokl. Chem., 1995, vol. 345, nos. 4–6, p. 304.

  34. Kargin, Yu.F., Buslaeva, E.Yu., Egorusheva, A.B., Kravchyk, G.K., and Gubin, S.P., Interaction of mixed-metal oxides with supercritical isopropanol, Russ. J. Inorg. Chem., 2003, vol. 48, no. 11, pp. 1615–1618.

    Google Scholar 

  35. Aliahmad, M. and Nasiri Moghaddam, N., Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal decomposition of magnetite (Fe3O4) nanoparticles, Mater. Sci., 2013, vol. 31, no. 2, pp. 264–268.

    CAS  Google Scholar 

  36. Bo, Z., Shuai, X., Mao, S., Yang, H., Qian, J., Chen, J., et al., Green preparation of reduced graphene oxide for sensing and energy storage applications, Sci. Rep., 2014, vol. 4, no. 4684.

  37. De Silva, K.K.H., Huang, H.-H., Joshi, R.K., and Yoshimura, M., Chemical reduction of graphene oxide using green reductants, Carbon, 2017, vol. 119, pp. 190–199.

    Article  CAS  Google Scholar 

  38. Zhu, X., Liu, Q., Zhu, X., Li, C., Xu, M., and Liang, Y., Reduction of graphene oxide via ascorbic acid and its application for simultaneous detection of dopamine and ascorbic acid, Int. J. Electrochem. Sci., 2012, vol. 7, pp. 5172–5184.

    CAS  Google Scholar 

  39. Dua, V., Surwade, S.P., Ammu, S., Agnihotra, S.R., Jain, S., Roberts, K.E., Park, S., Ruoff, R.S., and Manohar, S.K., All-organic vapor sensor using inkjet-printed reduced graphene oxide, Angew. Chem., Int. Ed., 2010, vol. 49, no. 12, pp. 2154–2157.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Ministry of Education and Science of the Russian Federation (grant no. 16.1384.2017/PCh).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Neskoromnaya, A. E. Burakov, A. V. Melezhik, A. V. Babkin, I. V. Burakova, D. A. Kurnosov or A. G. Tkachev.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neskoromnaya, E.A., Burakov, A.E., Melezhik, A.V. et al. Synthesis and Evaluation of Adsorption Properties of Reduced Graphene Oxide Hydro- and Aerogels Modified by Iron Oxide Nanoparticles. Inorg. Mater. Appl. Res. 11, 467–475 (2020). https://doi.org/10.1134/S2075113320020264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320020264

Keywords:

Navigation