Skip to main content
Log in

Comparative study of graphene aerogels synthesized using sol−gel method by reducing graphene oxide suspension

  • Nanostructured Systems and Materials
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A graphene oxide aerogel synthesized from graphene oxide hydrogel and graphene aerogels have been synthesized using the sol−gel method by reducing a suspension of graphene oxide with various reducing agents: a mixture of hypophosphorous acid and iodine, L-ascorbic acid, sodium metabisulfite, and by hydrothermal treatment. The obtained aerogels have been studied by scanning electron microscopy, IR spectroscopy, Raman spectroscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy. Comparative studies of graphene aerogels have shown that their properties, namely density, specific surface area, reduction degree, surface morphology, defectiveness of graphene sheets, interlayer spacing, average sizes of coherent scattering regions, number of layers, and crystallite size in the basal plane in graphene crystallites depend on the method of synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Z., Liu, Z., Sun, H., and Gao, C., Chem. Rev., 2015, vol. 115, p. 7046.

    Article  CAS  Google Scholar 

  2. Hong, J.-Y., Wie, J.J., Xua, Y., and Park, H.S., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 30946.

    Article  CAS  Google Scholar 

  3. Sun, H., Xu, Z., and Gao, C., Adv. Mater., 2013, vol. 25, p. 2554.

    Article  CAS  Google Scholar 

  4. Zhang, X., Sui, Z., Xu, B., et al., J. Mater. Chem., 2011, vol. 21, p. 6494.

    Article  CAS  Google Scholar 

  5. Pham, H.D., Pham, V.H., Cuong, T.V., et al., Chem. Commun., 2011, vol. 47, p. 9672.

    Article  CAS  Google Scholar 

  6. Zhang, L. and Shi, G., J. Phys. Chem. C, 2011, vol. 115, p. 17206.

    Article  CAS  Google Scholar 

  7. Chen, W. and Yan, L., Nanoscale, 2011, vol. 3, p. 3132.

    Article  CAS  Google Scholar 

  8. Hummers, W.S. and Offman, R.E., J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

    Article  CAS  Google Scholar 

  9. Shulga, Y.M., Baskakov, S.A., Baskakova, Y.V., et al., J. Power Sources, 2015, vol. 279, p. 722.

    Article  CAS  Google Scholar 

  10. Zhang, X., Sui, Z., Xu, B., et al., J. Mater. Chem., 2011, vol. 21, p. 6494.

    Article  CAS  Google Scholar 

  11. Chen, W. and Yan, L., Nanoscale, 2011, vol. 3, p. 3132.

    Article  CAS  Google Scholar 

  12. Volfkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., et al., Russ. J. Electrochem., 2014, vol. 50, p. 1099.

    Article  CAS  Google Scholar 

  13. Dimiev, A.M., Alemany, L.B., and Tour, J.M., ACS Nano, 2013, vol. 7, no. 2013, p. 576.

    Article  CAS  Google Scholar 

  14. Lv, Z., Yang, X., and Wang, E., Nanoscale, 2013, vol. 5, p. 663.

    Article  CAS  Google Scholar 

  15. Liu, Y., Qi, G.-Q., Liang, C.-L., et al., J. Mater. Chem., vol. 2, p. 3846.

  16. Scofield, J.H., J. Electron Spectrosc. Relat. Phenom., 1976, vol. 8, no. 2, p. 129.

    Article  CAS  Google Scholar 

  17. Shulga, Y.M., Baskakov, S.A., Knerelman, E.I., et al., RSC Adv., 2014, vol. 4, p. 587.

    Article  CAS  Google Scholar 

  18. Buchsteiner, A., Lerf, A., and Pieper, J., J. Phys. Chem. B, 2006, vol. 110, p. 22328.

    Article  CAS  Google Scholar 

  19. Barroso-Bujans, F., Cerveny, S., Alegria, A., and Colmenero, J., Carbon, 2010, vol. 48, p. 3277.

    Article  CAS  Google Scholar 

  20. Stroyuk, A.L. and Andryushina, N.S., Shcherban’, N.D., et al, Theor. Exp. Chem., 2012, vol. 48, p. 2.

    Article  CAS  Google Scholar 

  21. Si, W., Wu, X., Zhou, J., et al., Nanoscale Res. Lett., 2013, vol. 8, p. 247.

    Article  Google Scholar 

  22. Singh, C. S. N., Jana, A., Mishra, A.K., and Paul, A., Chem. Commun., 2016, vol. 52, p. 12661.

    Article  CAS  Google Scholar 

  23. Ferrari, A.C., Meyer, J.C., Scardaci, V., et al., Phys. Rev. Lett., 2006, vol. 97, p. 187401.

    Article  CAS  Google Scholar 

  24. Cancado, L.G., Jorio, A., Ferreira, E.H.M., et al., Nano. Lett., 2011, vol. 11, p. 3190.

    Article  CAS  Google Scholar 

  25. Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., et al., Phys. Chem. Chem. Phys., 2007, vol. 9, p. 1276.

    Article  CAS  Google Scholar 

  26. Eckmann, A., Felten, A., Mishchenko, A., et al., Nano Lett., 2012, vol. 12, p. 3925.

    Article  CAS  Google Scholar 

  27. Wang, Y.Y., Ni, Z.H., Yu, T., et al., J. Phys. Chem. C, 2008, vol. 112, p. 10637.

    Article  CAS  Google Scholar 

  28. Shul’ga, Yu.M., Lobach, A.S., Baskakov, S.A., et al., High Energy Chem., 2013, vol. 47, p. 331.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lobach.

Additional information

Original Russian Text © A.S. Lobach, V.A. Kazakov, N.G. Spitsyna, S.A. Baskakov, N.N. Dremova, Yu.M. Shul’ga, 2017, published in Khimiya Vysokikh Energii, 2017, Vol. 51, No. 4, pp. 284–291.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobach, A.S., Kazakov, V.A., Spitsyna, N.G. et al. Comparative study of graphene aerogels synthesized using sol−gel method by reducing graphene oxide suspension. High Energy Chem 51, 269–276 (2017). https://doi.org/10.1134/S0018143917040105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143917040105

Keywords

Navigation