Skip to main content
Log in

The Correlation between the Nanofiller Structure and the Properties of Polymer Nanocomposites: Fractal Model

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

In a polymer matrix, 1D and 2D nanofillers are shown to form aggregates that are fractal objects. Their dimensionality determines the degree of reinforcement of polymer nanocomposites at a fixed nanofiller volume. The theoretical estimates of the properties of these nanocomposites must use the real values of characteristics of their components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Wang, X., Yong, Z.Z., Li, Q.W., Brandford, P.D., Liu, W., Tucker, D.S., Cai, W., Wang, H., Yuan, F.G., and Zhu, Y.T., Ultrastrong, stiff and multifunctional carbon nanotube composites, Mater. Res. Lett., 2013, vol. 1, no. 1, pp. 19–25.

    Article  CAS  Google Scholar 

  2. Kul’met’yeva, V.B., Kachenyuk, M.N., and Ponosova, A.A., ZrO2–Y2O3 ceramic composite modified by multilayered graphene, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 4, pp. 626–633.

    Article  Google Scholar 

  3. Xie, S., Istrate, O.M., May, P., Barwich, S., Bell, A.P., Khan, U., and Coleman, J.N., Boron nitride nanosheets as barrier enhancing fillers in melt processed composites, Nanoscale, 2015, vol. 7, no. 10, pp. 4443–4450.

    Article  CAS  Google Scholar 

  4. Ni, Y., Chen, L., Teng, K., Shi, J., Qian, X., Xu, Z., Tian, X., Hu, C., and Ma, M., Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 21, pp. 11583–11591.

    Article  CAS  Google Scholar 

  5. Gao, Y., Chen, H., Ge, J., Chen, L., Zhao, J., Li, Q., Tang, J., and Gui, Y., Direct intertube cross-linking of carbon nanotubes at room temperature, Nano Lett., 2016, vol. 16, no. 10, pp. 6541–6547.

    Article  CAS  Google Scholar 

  6. Deev, I.S., Shvets, N.I., and Yamshchikova, G.A., Microstructure and physical-mechanical properties of high-temperature ceramic composites based on polycarboxylan composition, Materialovedenie, 2017, no. 4, pp. 40–45.

  7. El Achaby, M. and Qaiss, A., Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes, Mater. Des., 2013, vol. 44, no. 1, pp. 81–89.

    Article  CAS  Google Scholar 

  8. Sun, X., Sun, H., and Peng, H., Developing polymer composite materials: Carbon nanotubes or graphene? Adv. Mater., 2013, vol. 25, no. 37, pp. 5153–5176.

    Article  CAS  Google Scholar 

  9. Martin-Gallego M., Bernal M.M., Hernandez M., Verdejo R., and Lopez-Manchado, M.A., Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites, Eur. Polym. J., 2013, vol. 49, no. 6, pp. 1347–1353.

    Article  CAS  Google Scholar 

  10. Mikitaev, A.K. and Kozlov, G.V., Description of the degree of reinforcement of polymer/carbon nanotube nanocomposites in the framework of percolation models, Phys. Solid State, 2015, vol. 57, no. 5, pp. 974–977.

    Article  CAS  Google Scholar 

  11. Mikitaev, A.K. and Kozlov, G.V., How to define a nanocomposite by the example of polymer/organoclay nanostructured composites, Phys. Solid State, 2017, vol. 59, no. 7, pp. 1446–1449.

    Article  CAS  Google Scholar 

  12. Schaefer, D.W., Zhao, J., Dowty, H., Alexander, M., and Orler, E.B., Carbon nanofibre reinforcement of soft materials, Soft Mater., 2008, vol. 4, no. 10, pp. 2071–2079.

    Article  CAS  Google Scholar 

  13. Mandelbrot, B.B., The Fractal Geometry of Nature, San-Francisco: W.H. Freeman, 1982.

  14. Gao, J., Itkis, M.E., Wu, A., Bekyarova, E., Zhao, B., and Haddon, R.C., Continuous spinning of a single-walled carbon nanotube-nylon composite fiber, J. Am. Chem. Soc., 2005, vol. 127, no. 11, pp. 3847–3854.

    Article  CAS  Google Scholar 

  15. Xu, Y., Hong, W., Bai, H., Li, Ch., and Shi, G., Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure, Carbon, 2009, vol. 47, no. 15, pp. 3538–3543.

    Article  CAS  Google Scholar 

  16. Schaefer, D.W. and Justice, R.S., How nano are nanocomposites? Macromolecules, 2007, vol. 40, no. 24, pp. 8501–8517.

    Article  CAS  Google Scholar 

  17. Mikitaev, A.K. and Kozlov, G.V., Dependence of the degree of reinforcement of polymer/carbon nanotubes nanocomposites of the nanofiller dimension, Dokl. Phys., 2015, vol. 60, no. 5, pp. 203–206.

    Article  CAS  Google Scholar 

  18. Mikitaev, A.K., Kozlov, G.V., and Zaikov, G.E., Polymer Nanocomposites: Variety of Structural Forms and Applications, New York: Nova Science, 2008.

    Google Scholar 

  19. Coleman, J.N., Cadek, M., Ryan, K.P., Fonseca, A., Nady, J.B., Blau, W.J., and Ferreira, M.S., Reinforcement of polymer with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling, Polymer, 2006, vol. 47, no. 23, pp. 8556–8561.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Dolbin.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlukhanova, L.B., Kozlov, G.V. & Dolbin, I.V. The Correlation between the Nanofiller Structure and the Properties of Polymer Nanocomposites: Fractal Model. Inorg. Mater. Appl. Res. 11, 188–191 (2020). https://doi.org/10.1134/S2075113320010049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320010049

Keywords:

Navigation