Skip to main content
Log in

Heat-Resistant Electrical Insulating Fiberglass Plastics for Shipbuilding

  • POLYMER COMPOSITE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—Heat resistance of fiberglass plastics depends mostly on heat resistance of the polymer matrix (binder) and technological modes of production. Increasing the heat resistance and strength of electric insulation makes it possible to improve the properties of electric machines and prolong their working life. Hot pressing technology was developed and fiberglass plastic articles for electric insulation of parts of the ship propulsion complex (main and servicing diesel generators, turbo generators, electric motors) were manufactured. Exploitation modes were settled for electric insulation from different types of binders and reinforcing materials based on alkali-free, quartz, and siliceous high modulus and high strength glass fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Fiberglass-reinforced plastics based on silicone binders, which are considerably inferior in strength, are not considered in the present paper [1, 2].

REFERENCES

  1. Sovremennye mashinostroitel’nye materialy. Nemetallicheskie materialy. Spravochnik (Modern Machine Engineering Materials. Nonmetal Materials: Handbook), Gorynin, I.V., Oryshchenko, A.S., Bakhareva, V.E., and Nikolaev, G.I., Eds., St. Petersburg: Professional, 2014.

    Google Scholar 

  2. Bakhareva, V.E. and Oryshchenko, A.S., Vysokoprochnye stekloplastiki dlya arkticheskogo mashinostroeniya (High-Strength Fiberglass for Arctic Machine Engineering), St. Petersburg: Professional, 2017.

    Google Scholar 

  3. Bakhareva, V.E. and Sargsyan, A.S., New heat-resistant electrical insulating fiberglass, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 6, pp. 881–885.

    Article  Google Scholar 

  4. Dawson, D., The Curiosity Mars rover: descent stage composites, April 30, 2014. https://www.compositesworld. com/articles/the-curiosity-mars-rover-descent-stage-composites.

  5. Hexcel’s website. http://www.hexcel.com/Solutions/ Aerospace/AJames-Webb-Telescope. Accessed November 10, 2017.

  6. Sommer, M., Tailor-made composite performance properties for high temperature applications, presented at AVK Tagung Essen, Germany, September 14, 2010. http://www.nasa.gov/hubble.

  7. Naseem, A., Munshi, N.A., et al., Radiation resistant electrical insulation qualified for ITER TF coils, IEEE Trans. Appl. Supercond., 2013. V. 23, no. 3, art. ID 7700104.

    Article  Google Scholar 

  8. Wood, K., HPC for aircraft interiors conference review, December 31, 2012. http://www.compositesworld.com/ articles/hpc-for-aircraft-interiors-conference-review. Accessed November 10, 2017.

  9. Roberts, J.C., Analytical techniques for sizing the walls of advanced composite electronics enclosures, Composites, Part B, 1999, vol. 30, pp. 177‒187.

    Article  Google Scholar 

  10. Bakhareva, V.E., Kontorovskaya, I.A., and Petrova, L.V., Polimery v sudovom mashinostroenii (Polymers in Shipbuilding Industry), Leningrad: Sudostroenie, 1975.

    Google Scholar 

  11. Steklyannye volokna (Fibreglasses), Aslanov, M.S., Ed., Moscow: Khimiya, 1979.

    Google Scholar 

  12. Gurtovnik, I.G. and Sportsmen, V.N., Stekloplastiki radiotekhnicheskogo naznacheniya (Radio Engineering Fibreglasses), Moscow: Khimiya, 1987.

    Google Scholar 

  13. Gurtovnik, I.G., Sokolov, V.I., Trofimov, N.N., and Shalgunov, S.I., Radioprozrachnye izdeliya iz stekloplastikov (Radiotransparent Products from Fibreglasses), Moscow: Mir, 2003.

  14. Badalova, E.I., Bardushkina, V.P., Voitsekhovich, N.Ya., et al., Khimicheskaya obrabotka poverkhnosti steklyannogo volokna (Chemical Treatment of Glass Fiber Surface), Aslanov, M.S., Ed., Moscow: Khimiya, 1966.

    Google Scholar 

  15. Davydova, I.F. and Kavun, N.S., Fibreglasses is the multifunctional composite materials, in Aviatsionnye materialy i tekhnologii (Aviation Materials and Technologies), Kablov, E.N., Ed., Moscow: Vseross. Inst. Aviats. Mater., 2012, pp. 253‒260.

    Google Scholar 

  16. Nikolaev, A.F. and Kryzhanovskii, V.K., Tekhnologiya polimernykh materialov. Uchebnoe posobie (Technology of Polymer Materials: Manual), St. Petersburg: Professiya, 2008.

    Google Scholar 

  17. Andrianov, K.A., Kremniiorganicheskie soedineniya (Silicone Organic Compounds), Moscow: Khimiya, 1955.

    Google Scholar 

  18. Kuznetsov, A.A. and Semenova, G.K., Perspective thermally stable thermoset binders for polymer composite materials, Russ. J. Gen. Chem., 2010, vol. 80, no. 10, pp. 2170–2180.

    Article  CAS  Google Scholar 

  19. Tsegel’skaya, A.Yu., Semenova, G.K., and Kuzne-tsov, A.A., DSC and IR-spectrometry analysis of solidification of biscyanic ethers, Vopr. Materialoved., 2012, no. 4 (72), pp. 185–189.

  20. Lonza company website. http://www.lonza.com.

  21. Isovolta company website. http://www/isovolta.com.

  22. Vikhrov, I.A., Aristov, V.F., and Gurov, D.A., New oligocyanurate binders containing the fragments of adamantine, V Mezhdunarodnaya konferentsiya-shkola po khimii i fizikokhimii oligomerov (V Int. Conf.-School on Chemistry and Physical Chemistry), Volgograd, 2015.

  23. Vikhrov, I.A., Aristov, V.F., and Gurov, D.A., Adamante oligocyanurate resins for dimensionally stable carbon composite constructions used in spacecrafts, Reshetnevskie Chteniya, 2015, vol. 1, no. 19, pp. 91–93.

    Google Scholar 

  24. Bryazgin, A.A., Korobeinikov, M.V., Pupkov, Yu.A., Mikhailenko, M.A., Vikhrov, I.A., and Zdvizhkov, A.T., The influence of high doses of ionizing radiation on the mechanical properties of composite materials, Trudy XXVII mezhdunarodnoi konferentsii “Radiatsionnaya fizika tverdogo tela” (Proc. XXVII Int. Conf. “Radiation Physics of Solids”), Sevastopol, 2017.

  25. Tsirkin, M.Z. and Kostritskii, S.N., Stekloplastiki v elektromashinostroenii (Fiberglass in Electrical Machine Engineering), St. Petersburg: Energoatomizdat, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Bakhareva.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhareva, V.E., Nikitina, I.V., Sargsian, A.S. et al. Heat-Resistant Electrical Insulating Fiberglass Plastics for Shipbuilding. Inorg. Mater. Appl. Res. 9, 1103–1115 (2018). https://doi.org/10.1134/S2075113318060023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318060023

Keywords:

Navigation