Skip to main content
Log in

ZrO2–Y2O3 ceramic composite modified by multilayered graphene

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The effect of introduction of multilayered graphene particles into a ceramic material based on zirconium dioxide, stabilized by 3 mol % of Y2O3, on the microstructure and properties of the composite is studied. The introduction of 1 vol % of graphene is found to result in the improvement of the crack stability of the ceramic matrix by nearly 1.7 times. The microstructure of the sintered composite is shown to be dependent on the type of surfactant used for dispersing of thermally expanded graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, J., Boccaccini, A.R., and Shaffer, M.S.P., Ceramic matrix composites containing carbon nanotubes, J. Mater. Sci., 2009, vol. 44, no. 8, pp. 1934–1951.

    Article  CAS  Google Scholar 

  2. Ahmad, I., Unwin, M., Cao, H., Chen, H., et al., Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations, Compos. Sci. Technol., 2010, vol. 70, no. 8, pp. 1199–1206.

    Article  CAS  Google Scholar 

  3. Datye, A., Wub, K.-H., Gomes, G., et al., Synthesis, microstructure and mechanical properties of yttria stabilized zirconia (3YTZP)—multi-walled nanotube (MWNTs) nanocomposite by direct in-situ growth of MWNTs on zirconia particles, Compos. Sci. Technol., 2010, vol. 70, no. 14, pp. 2086–2092.

    Article  CAS  Google Scholar 

  4. Zyong, C.T.T., Faikov, P.P., Popova, N.A., et al., Composite material based on Al2O3: MgO reinforced carbon nanotubes, Usp. Khim. Khim. Tekhnol., 2014, vol. 28, no. 6, pp. 79–82.

    Google Scholar 

  5. Ahmad, I., Yazdani, B., and Zhu, Y., Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites, Nanomaterials, 2015, vol. 5, no. 1, pp. 90–114.

    Article  Google Scholar 

  6. Porwal, H., Grasso, S., and Reece, M.J., Review of graphene-ceramic matrix composites, Adv. Appl. Ceram., 2013, vol. 112, no. 8, pp. 443–454.

    Article  CAS  Google Scholar 

  7. Liu, J., Yan, H., Reece, M.J., and Jiang, K., Toughening of zirconia/alumina composites by the addition of graphene platelets, J. Eur. Ceram. Soc., 2012, vol. 32, no. 16, pp. 4185–4193.

    Article  CAS  Google Scholar 

  8. Walker, L.S., Marotto, V.R., Rafiee, M.A., Koratkar, N., and Corral, E.L., Toughening in graphene ceramic composites, Ascnano, 2011, vol. 5, no. 4, pp. 3182–3190.

    CAS  Google Scholar 

  9. Koszor, O., et al., Processing, mechanical and thermophysical properties of silicon nitride based composites with carbon nanotubes and graphene, Process. Appl. Ceram., 2007, vol. 1, nos. 1–2, pp. 35–41.

    Article  CAS  Google Scholar 

  10. Bódis, E., Tapasztó, O., Károly, Z., et al., Spark plasma sintering of Si3N4/multilayer graphene composites, Open Chem., 2015, vol. 13, no. 1, pp. 484–489.

    Google Scholar 

  11. Ramirez, C. and Osendi, M.I., Toughening in ceramics containing graphene fillers, Ceram. Int., 2014, vol. 40, no. 7, pp. 11187–11192.

    Article  CAS  Google Scholar 

  12. He, T., Li, J., Wang, L., Zhu, J., and Jiang, W., Preparation and consolidation of alumina/graphene composite powders, Mater. Trans., 2009, vol. 50, no. 4, pp. 749–751.

    Article  CAS  Google Scholar 

  13. Kim, W., Oh, H.S., and Shon, I.J., The effect of graphene reinforcement on the mechanical properties of Al2O3 ceramics rapidly sintered by high-frequency induction heating, Int. J. Refract. Met. Hard Mater., 2015, vol. 48, no. 1, pp. 376–381.

    Article  CAS  Google Scholar 

  14. Yin, Z.E., Zhang, H., Kang, Y.R., Feng, J.M., and Li, Y.L., Fabrication of graphene/zirconia nanocomposite by mixing graphite oxide and zirconia nanopowders and pressureless sintering, Key Eng. Mater., 2012, vols. 512–515, no. 6, pp. 65–68.

    Article  Google Scholar 

  15. Shin, J.H. and Hong, S.H., Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics, J. Eur. Ceram. Soc., 2014, vol. 34, no. 5, pp. 1297–1302.

    Article  CAS  Google Scholar 

  16. Basu, B., Toughening of yttria-stabilized tetragonal zirconia ceramics, Int. Mater. Rev., 2005, vol. 50, no. 4, pp. 239–256.

    Article  CAS  Google Scholar 

  17. Hannink, R.H.J., Stringer, R.K., and Swain, M.V., The development of zirconia transformation toughened ceramics in australia, J. Austral. Ceram. Soc., 2014, vol. 50, no. 1, pp. 1–14.

    CAS  Google Scholar 

  18. Grayfer, E.D., Makotchenko, V.G., Nazarov, A.S., Kim, S.-J., and Fedorov, V.E., Graphene: Chemical approaches to the synthesis and modification, Russ. Chem. Rev., 2011, vol. 80, no. 8, pp. 751–770.

    Article  CAS  Google Scholar 

  19. Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements, J. Am. Ceram. Soc., 1981, vol. 64, no. 9, pp. 533–538.

    Article  CAS  Google Scholar 

  20. Tang, X. and Zheng, X., Raman scattering and t-phase lattice vibration of 3% (mole fraction) Y2O3–ZrO2, J. Mater. Sci. Technol., 2004, vol. 20, no. 5, pp. 485–489.

    CAS  Google Scholar 

  21. Torres, D.I. and Llopis, J., Infrared photoluminescence and Raman spectra in the Y2O3–ZrO2 system, Superlattices Microstruct., 2009, vol. 45, nos. 4–5, pp. 482–488.

    Article  CAS  Google Scholar 

  22. Kul’met’eva, V.B. and Ponosova, A.A., Preparation of graphene-containing suspensions by dispersion in aqueous solutions of surfactants, Sovrem. Probl. Nauki Obraz., 2015, no. 2. http://www.science-education.ru/129-22985. Accessed November 19, 2015.

  23. Ferrari, A.C. and Basko, D.M., Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol., 2013, vol. 8, no. 4, pp. 235–246.

    Article  CAS  Google Scholar 

  24. Das, A., Chakraborty, B.W., and Sood, A.K., Raman spectroscopy of graphene on different substrates and influence of defects, Bull. Mater. Sci., 2009, vol. 31, no. 3, pp. 579–584.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Kul’met’yeva.

Additional information

Original Russian Text © V.B. Kul’met’yeva, M.N. Kachenyuk, A.A. Ponosova, 2017, published in Materialovedenie, 2017, No. 2, pp. 41–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kul’met’yeva, V.B., Kachenyuk, M.N. & Ponosova, A.A. ZrO2–Y2O3 ceramic composite modified by multilayered graphene. Inorg. Mater. Appl. Res. 8, 626–633 (2017). https://doi.org/10.1134/S2075113317040153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113317040153

Keywords

Navigation