Skip to main content
Log in

ZrB2/HfB2–SiC Ultra-High-Temperature Ceramic Materials Modified by Carbon Components: The Review

  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The review has been made of recent publications on modification of ZrB2/HfB2–SiC ultra-hightemperature ceramic composite materials (UHTC) by carbon components: amorphous carbon, graphite, graphene, fibers, and nanotubes. Available data have been presented on some aspects of oxidation of such materials at temperatures ≥1500°C and both at the atmospheric pressure and at the reduced oxygen partial pressure; structural features of the formed multilayer oxidized regions have been noted. It has been considered how the type and content of the carbon component and the conditions (first of all, temperature) of UHTC production affect the density, flexural strength, hardness, fracture toughness, and thermal and oxidation resistance of the modified ceramic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Samsonov, Refractory Compounds: A Handbook of Properties and Applications (Metallurgizdat, Moscow, 1963). [in Russian]

    Google Scholar 

  2. P. Rogl and P. E. Potter, Calphad 12, 191 (1988). doi 10.1016/0364-5916(88)90021-1

    Article  CAS  Google Scholar 

  3. R. Rogl and H. Bittermann, J. Solid State Chem. 154, 257 (2000). doi 10.1006/jssc.2000.8846

    Article  CAS  Google Scholar 

  4. E. Rudy and S. Windisch, Report AFML-TR-65–2 (Air Force Materials Laboratory, Wright Patterson Air Force Base, Ohio, 1966), Part II, Vol. XIII, pp. 1–212.

  5. K. P. Portnoi, V. M. Romashov, and L. I. Vyroshina, Poroshk. Metall. 91 (7), 68 (1970).

    Google Scholar 

  6. G. V. Samsonov, A. S. Bolgar, E. A. Guseva, et al., High Temp.–High Pressures 5, 29 (1973).

    CAS  Google Scholar 

  7. G. V. Samsonov and L. Ya. Markovskii, Usp. Khim. XXV, 190 (1956).

    Google Scholar 

  8. P. Schwarzkopf and R. Kieffer, Refractory Hard Metals: Borides, Carbides, Nitrides, and Silicides: the Basic Constituents of Cemented Hard Metals and Their Use as High-Temperature Materials (Macmillan, New York, 1953).

    Google Scholar 

  9. E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 58, 1669 (2013). doi 10.1134/S0036023613140039

    Article  CAS  Google Scholar 

  10. R. Savino, L. Criscuolo, G. D. Di Martino, and S. Mungiguerra, J. Eur. Ceram. Soc. 38, 2937 (2018). doi 10.1016/j.jeurceramsoc.2017.12.043

    Article  CAS  Google Scholar 

  11. A. Paul, J. Binner, and B. Vaidhyanathan, in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, Ed. by W. G. Fahrenholtz, E. J. Wuchina, W. E. Lee, and Y. Zhou (Wiley-Blackwell, New York, 2014), pp. 144–166. doi 10.1002/9781118700853.ch7

  12. L. Silvestroni, H.-J. Kleebe, W. G. Fahrenholtz, and J. Watts, Sci. Rep. 7, Article no. 40730 (2017). doi 10.1038/srep40730

  13. S. Guo, J. Am. Ceram. Soc. 101, 2707 (2018). doi 10.1111/jace.15446

    Article  CAS  Google Scholar 

  14. E. Zapata-Solvas, D. Gomez-Garcia, A. Dominguez-Rodriguez, and W. E. Lee, J. Eur. Ceram. Soc. 38, 47 (2017). doi 10.1016/j.jeurceramsoc.2017.08.028

    Article  CAS  Google Scholar 

  15. W. G. Fahrenholtz and G. E. Hilmas, Scripta Mater. 129, 94 (2017). doi 10.1016/j.scriptamat.2016.10.018

    Article  CAS  Google Scholar 

  16. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 421 (2018). doi 10.1134/S0036023618040186

    Article  CAS  Google Scholar 

  17. F. Monteverde and R. Savino, J. Am. Ceram. Soc. 95, 2282 (2012). doi 10.1111/j.1551-2916.2012.05226.x

    Article  CAS  Google Scholar 

  18. X. Jin, R. He, X. Zhang, P. Hu, J. Alloys Compd. 566, 125 (2013). doi 10.1016/j.jallcom.2013.03.067

    Article  CAS  Google Scholar 

  19. F. Monteverde and R. Savino, J. Am. Ceram. Soc. 95, 2282 (2012). doi 10.1111/j.1551-2916.2012.05226.x

    Article  CAS  Google Scholar 

  20. A. Cecere, R. Savino, C. Allouis, and F. Monteverde, Int. J. Heat Mass Transfer 91, 747 (2015). doi 10.1016/j.ijheatmasstransfer.2015.08.029

    Article  CAS  Google Scholar 

  21. T. A. Parthasarathy, M. D. Petry, M. K. Cinibulk, et al., J. Am. Ceram. Soc. 96, 907 (2013). doi 10.1111/jace.12180

    Article  CAS  Google Scholar 

  22. T. H. Squire and J. Marschall, J. Eur. Ceram. Soc. 30, 2239 (2010).

    Article  CAS  Google Scholar 

  23. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1298 (2014). doi 10.1134/S0036023614110217

    Article  CAS  Google Scholar 

  24. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 60, 1360 (2015). doi 10.1134/S0036023615110133

    Article  CAS  Google Scholar 

  25. E. P. Simonenko, A. N. Gordeev, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1203 (2016). doi 10.1134/S003602361610017X

    Article  CAS  Google Scholar 

  26. V. G. Sevast’yanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 58, 1269 (2013). doi 10.1134/S003602361311017X

    Article  CAS  Google Scholar 

  27. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1361 (2014). doi 10.1134/S0036023614120250

    Article  CAS  Google Scholar 

  28. Yu. B. Lyamin, V. Z. Poilov, E. N. Pryamilova, et al., Russ. J. Inorg. Chem. 61, 149 (2016). doi 10.1134/S0036023616020133

    Article  CAS  Google Scholar 

  29. D. V. Grashchenkov, O. Yu. Sorokin, Yu. E. Lebedeva, and M. L. Vaganova, Russ. J. Appl. Chem. 88, 386 (2015).

    Article  CAS  Google Scholar 

  30. P. S. Sokolov, A. V. Arakcheev, I. L. Mikhal’chik, et al., Refract. Ind. Ceram. 58, 46 (2017). doi 10.1007/s11148-017-0052-9

    Article  CAS  Google Scholar 

  31. L. A. Chevykalova, I. Yu. Kelina, I. L. Mikhal’chik, et al., Refract. Ind. Ceram. 54, 455 (2014).

    Article  CAS  Google Scholar 

  32. D. V. Kolovertnov and I. B. Ban’kovskaya, Glass Phys. Chem. 41, 324 (2015).

    Article  CAS  Google Scholar 

  33. C. Wei, S. Li, K. Yin, et al., Ceram. Int. 44, 4385 (2018). doi 10.1016/j.ceramint.2017.12.036

    Article  CAS  Google Scholar 

  34. S. Guo, J. Ceram. Soc. Jpn. 124, 166 (2016). doi 10.2109/jcersj2.15190

    Article  CAS  Google Scholar 

  35. C. Wei and C. Ye, Int. J. Refract. Met. Hard Mater. 51, 233 (2015). doi 10.1016/j.ijrmhm.2015.04.023

    Article  CAS  Google Scholar 

  36. L.-L. Wang, J. Liang, G.-D. Fang, et al., Ceram. Int. 40, 5255 (2014). doi 10.1016/j.ceramint.2013.10.097

    Article  CAS  Google Scholar 

  37. C. Wei, X. Zhang, and S. Li, Ceram. Int. 40, 5001 (2014). doi 10.1016/j.ceramint.2013.08.070

    Article  CAS  Google Scholar 

  38. M. M. Opeka, I. G. Talmy, and J. A. Zaykoski, J. Mater. Sci. 39, 5887 (2004). doi 10.1023/B:JMSC.0000041686.21788.77

    Article  CAS  Google Scholar 

  39. J. Han, P. Hu, X. Zhang, et al., Compos. Sci. Technol. 68, 799 (2008). doi 10.1016/j.compscitech.2007.08.017

    Article  CAS  Google Scholar 

  40. T. A. Parthasarathy, R. A. Rapp, M. Opeka, and M. K. Cinibulk, J. Am. Ceram. Soc. 95, 338 (2012). doi 10.1111/j.1551-2916.2011.04927.x

    Article  CAS  Google Scholar 

  41. E. Eakins, D. D. Jayaseelan, and W. E. Lee, Metall. Mater. Trans. A. 42A, 878 (2011). doi 10.1007/s11661-010-0540-8

    Article  CAS  Google Scholar 

  42. D. Gao, Y. Zhang, J. Fu, et al., Corros. Sci. 52, 3297 (2010). doi 10.1016/j.corsci.2010.06.004

    Article  CAS  Google Scholar 

  43. K. S. Cissel and E. Opila, J. Am. Ceram. Soc. 101, 1765 (2018). doi 10.1111/jace.15298

    Article  CAS  Google Scholar 

  44. W. G. Fahrenholtz, J. Am. Ceram. Soc. 90, 143 (2007). doi 10.1111/j.1551-2916.2006.01329.x

    Article  CAS  Google Scholar 

  45. J. Li, T. J. Lenosky, C. J. Foörst, and S. Yip, J. Am. Ceram. Soc. 91, 1475 (2008). doi 10.1111/j.1551-2916.2008.02319.x

    Article  CAS  Google Scholar 

  46. A. Rezaie, W. G. Fahrenholtz, and G. E. Hilmas, J. Eur. Ceram. Soc. 33, 413 (2013). doi 10.1016/j.jeurceramsoc. 2012.09.016

    Article  CAS  Google Scholar 

  47. H. Jin, S. Meng, X. Zhang, et al., J. Am. Ceram. Soc. 99, 2474 (2016). doi 10.1111/jace.14232

    Article  CAS  Google Scholar 

  48. Q. N. Nguyen, E. J. Opila, and R. C. Robinson, J. Electrochem. Soc. 151, B558 (2004). doi 10.1149/1.1786929

    Article  CAS  Google Scholar 

  49. C.-L. Zhou, Y.-Y. Wang, Z.-Q. Cheng, et al., Adv. Mat. Res. 105–106, 199 (2010). doi 10.4028/www.scientific. net/AMR.105-106.199

    Google Scholar 

  50. H. Zhang, Y. Yan, Z. Huang, et al., J. Am. Ceram. Soc. 92, 1599 (2009). doi 10.1111/j.1551-2916.2009.03039.x

    Article  CAS  Google Scholar 

  51. X.-J. Zhou, G.-J. Zhang, Y.-G. Li, et al., Mater. Lett. 61, 960 (2007). doi 10.1016/j.matlet.2006.06.024

    Article  CAS  Google Scholar 

  52. S. Zhou, Z. Wang, X. Sun, and J. Han, Mater. Chem. Phys. 122, 470 (2010). doi 10.1016/j.matchemphys. 2010.03.028

    Article  CAS  Google Scholar 

  53. X. Sun, X. Zhang, Z. Wang, et al., Key Eng. Mater. 434–435, 185 (2010). doi 10.4028/www.scientific. net/KEM.434-435.185

    Article  CAS  Google Scholar 

  54. W.-M. Guo, Y. You, G.-J. Zhang, et al., J. Eur. Ceram. Soc. 35, 1985 (2015). doi 10.1016/j.jeurceramsoc. 2014.12.026

    Article  CAS  Google Scholar 

  55. X. Zhang, Z. Wang, X. Sun, et al., Mater. Lett. 62, 4360 (2008). doi 10.1016/j.matlet.2008.07.027

    Article  CAS  Google Scholar 

  56. Z. Wang, S. Wang, X. Zhang, et al., J. Alloys Compd. 484, 390 (2009). doi 10.1016/j.jallcom.2009.04.109

    Article  CAS  Google Scholar 

  57. H. Jin, S. Meng, Q. Yang, and Y. Zhu, Ceram. Int. 39, 5591 (2013). doi 10.1016/j.ceramint.2012.12.074

    Article  CAS  Google Scholar 

  58. H. Jin, S. Meng, Y. Zhu, and Y. Zhou, Mater. Des. 50, 509 (2013). doi 10.1016/j.matdes.2013.03.025

    Article  CAS  Google Scholar 

  59. H. Jin, S. Meng, Q. Yang, and Y. Zhu, Ceram. Int. 39, 5591 (2013). doi 10.1016/j.ceramint.2012.12.074

    Article  CAS  Google Scholar 

  60. X. H. Zhang, Z. Wang, P. Hu, et al., Scripta Mater. 61, 809 (2009). doi 10.1016/j.scriptamat.2009.07.001

    Article  CAS  Google Scholar 

  61. Z. Wang, C. Hong, X. Zhang, et al., Mater. Chem. Phys. 113, 338 (2009). doi 10.1016/j.matchemphys. 2008.07.095

    Article  CAS  Google Scholar 

  62. S. Zhou, Z. Wang, and W. Zhang, J. Alloys Compd. 485, 181 (2009). doi 10.1016/j.jallcom.2009.05.126

    Article  CAS  Google Scholar 

  63. P. Hu, Z. Wang, and X. Sun, Int. J. Refract. Met. Hard Mater. 28, 280 (2010). doi 10.1016/j.ijrmhm.2009. 10.013

    Article  CAS  Google Scholar 

  64. Z. Wang, Q. Qu, Z. Wu, and G. Shi, J. Alloys Compd. 509, 6871 (2011). doi 10.1016/j.jallcom.2011.03.163

    Article  CAS  Google Scholar 

  65. L. Wang, J. Liang, and G. Fang, J. Alloys Compd. 619, 145 (2015). doi 10.1016/j.jallcom.2014.08.255

    Article  CAS  Google Scholar 

  66. J. Niu, H. Jin, S. Meng, et al., Ceram. Int. 42, 5562 (2016). doi 10.1016/j.ceramint.2015.12.031

    Article  CAS  Google Scholar 

  67. H. Jin, S. Meng, X. Zhang, et al., J. Eur. Ceram. Soc. 36, 1855 (2016). doi 10.1016/j.jeurceramsoc. 2016.02.040

    Article  CAS  Google Scholar 

  68. Z. Wang, Z. Wu, and G. Shi, Mater. Sci. Eng., A. A528, 2870 (2011). doi 10.1016/j.msea.2010.12.079

    CAS  Google Scholar 

  69. L. Wang, D. Kong, G. Fang, and J. Liang, Int. J. Appl. Ceram. Technol. 14, 31 (2017). doi 10.1111/ijac.12613

    Article  CAS  Google Scholar 

  70. R. Zhang, X. Cheng, D. Fang, et al., Mater. Des. 52, 17 (2013). doi 10.1016/j.matdes.2013.05.045

    Article  CAS  Google Scholar 

  71. X. Chen, X. Peng, Z. Wei, et al., Mater. Des. 126, 91 (2017). doi 10.1016/j.matdes.2017.04.001

    Article  CAS  Google Scholar 

  72. X. Zhang, Z. Wang, X. Sun, et al., Int. J. Mod. Phys. B 23, 1160 (2009). doi 10.1142/S0217979209060622

    Article  CAS  Google Scholar 

  73. V. Zamora, M. Nygren, F. Guiberteau, and A. L. Ortiz, Ceram. Int. 40, 11457 (2014). doi 10.1016/j.ceramint. 2014.03.130

    Article  CAS  Google Scholar 

  74. M. Shahedi Asl, M. J. Zamharir, Z. Ahmadi, and S. Parvizi, Mater. Sci. Eng., A 716, 99 (2018). doi 10.1016/j.msea.2018.01.038

    Article  CAS  Google Scholar 

  75. M. Shahedi Asl, Ceram. Int. 44, 6935 (2018). doi 10.1016/j.ceramint.2018.01.122

    Article  CAS  Google Scholar 

  76. Y. H. Cheng, Y. Qi, P. Hu, et al., J. Am. Ceram. Soc. 99, 2131 (2016). doi 10.1111/jace.14192

    Article  CAS  Google Scholar 

  77. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 61, 1483 (2016). doi 10.1134/S0036023616120172

    Article  CAS  Google Scholar 

  78. E. P. Simonenko, N. P. Simonenko, D. V. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 1649 (2016). doi 10.1134/S0036023616130039

    Article  CAS  Google Scholar 

  79. F. Li, Y. Cao, J. Liu, et al., Ceram. Int. 43, 7743 (2017). doi 10.1016/j.ceramint.2017.03.080

    Article  CAS  Google Scholar 

  80. Y. Cao, H. Zhang, F. Li, et al., Ceram. Int. 41, 7823 (2015). doi 10.1016/j.ceramint.2015.02.117

    Article  CAS  Google Scholar 

  81. E. P. Simonenko, N. P. Simonenko, E. K. Papynov, et al. Russ. J. Inorg. Chem. 63, 1 (2018). doi 10.1134/S0036023618010187

    Article  CAS  Google Scholar 

  82. N. T. Kuznetsov, V. G. Sevastyanov, E. P. Simonenko, and N. P. Simonenko, RU Patent No. 2618567, 04.05.2017.

  83. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 1345, (2018) doi 10.1134/S0036023618100170

    Article  CAS  Google Scholar 

  84. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 1484, (2018) doi 10.1134/S0036023618110177

    Article  CAS  Google Scholar 

  85. F. Yang, X. Zhang, J. Han, and S. Du, Mater. Lett. 62, 2925 (2008). doi 10.1016/j.matlet.2008.01.076

    Article  CAS  Google Scholar 

  86. F. Yang, X. Zhang, J. Han, and S. Du, Mater. Des. 29, 1817 (2008). doi 10.1016/j.matdes.2008.03.011

    Article  CAS  Google Scholar 

  87. F. Yang, X. Zhang, J. Han, and S. Diu, J. Compos. Mater. 44, 953 (2010). doi 10.1177/0021998309346545

    Article  CAS  Google Scholar 

  88. F.-Y. Yang, X.-H. Zhang, and S.-Y. Du, Key Eng. Mater. 368–372, 1753 (2008). doi 10.4028/www.scientific. net/KEM.368-372.1753

    Article  Google Scholar 

  89. F. Yang, X. Zhang, J. Han, and S. Du, J. Alloys Compd. 472, 395 (2009). doi 10.1016/j.jallcom. 2008.04.092

    Article  CAS  Google Scholar 

  90. S. Guo, K. Naito, and Y. Kagawa, Ceram. Int. 39, 1567 (2013). doi 10.1016/j.ceramint.2012.07.108

    Article  CAS  Google Scholar 

  91. S. Guo, Ceram. Int. 39, 5733 (2013). doi 10.1016/j.ceramint.2012.12.091

    Article  CAS  Google Scholar 

  92. M. Shahedi Asl, F. Golmohammadi, M. Ghassemi Kakroudi, and M. Shokouhimehr, Ceram. Int. 42, 4498 (2016). doi 10.1016/j.ceramint.2015.11.139

    Article  CAS  Google Scholar 

  93. M. Shahedi Asl, M. G. Kakroudi, I. Farahbakhsh, et al., Ceram. Int. 42, 18612 (2016). doi 10.1016/j.ceramint. 2016.08.205

    Article  CAS  Google Scholar 

  94. K. Gui, P. Hu, W. Hong, et al., J. Alloys Compd. 706, 16 (2017). doi 10.1016/j.jallcom.2017.02.227

    Article  CAS  Google Scholar 

  95. P. Hu, K. Gui, W. Hong, et al., J. Eur. Ceram. Soc. 37, 2317 (2017). doi 10.1016/j.jeurceramsoc.2017.02.008

    Article  CAS  Google Scholar 

  96. W. Hong, K. Gui, P. Gui, et al., J. Adv. Ceram. 6, 110 (2017). doi 10.1007/s40145-017-0223-7

    Article  CAS  Google Scholar 

  97. Z. Balak, M. Shahedi Asl, M. Azizieh, et al., Ceram. Int. 43, 2209 (2017). doi 10.1016/j.ceramint. 2016.11.005

    Article  CAS  Google Scholar 

  98. M. Shahedi Asl, Ceram. Int. 43, 15047 (2017). doi 10.1016/j.ceramint.2017.08.030

    Article  CAS  Google Scholar 

  99. Z. Balak, M. Azizieh, H. Kafashan, et al., Mater. Chem. Phys. 196, 333 (2017). doi 10.1016/j.matchemphys.2017.04.062

    Article  CAS  Google Scholar 

  100. Z. Nasiri, M. Mashhadi, and A. Abdollahi, Int. J. Refract. Met. Hard Mater. 51, 216 (2015). doi 10.1016/j.ijrmhm.2015.04.005

    Article  CAS  Google Scholar 

  101. W.-B. Tian, Y.-M. Kan, G.-J. Zhang, et al., Mater. Sci. Eng., A487, 568 (2008). doi 10.1016/j.msea.2007.11.027

    Article  CAS  Google Scholar 

  102. M. Shahedi Asl, I. Farahbakhsh, and B. Nayebi, Ceram. Int. 42, 1950 (2016). doi 10.1016/j.ceramint. 2015.09.165

    Article  CAS  Google Scholar 

  103. J. Lin, Y. Huang, H. Zhang, et al., Ceram. Int. 41, 15261 (2015). doi 10.1016/j.ceramint.2015.07.207

    Article  CAS  Google Scholar 

  104. A. Nisar, S. Ariharan, and K. Balani, Ceram. Int. 43, 13483 (2017). doi 10.1016/j.ceramint.2017.07.053

    Article  CAS  Google Scholar 

  105. A. Nisar, S. Ariharan, T. Venkateswaran, et al., Carbon 111, 269 (2017). doi 10.1016/j.carbon.2016.10.002

    Article  CAS  Google Scholar 

  106. A. Nisar and K. Balani, Coatings 7, 110/1 (2017). doi 10.3390/coatings7080110

    CAS  Google Scholar 

  107. M. Shahedi Asl and M. Ghassemi Kakroudi, Mater. Sci. Eng., A. 625, 385 (2015). doi 10.1016/j.msea.2014.12.028

    Article  CAS  Google Scholar 

  108. X. Zhang, Y. An, J. Han, et al., RSC Adv. 5, 47060 (2015). doi 10.1039/C5RA05922D

    Article  CAS  Google Scholar 

  109. Y. An, X. Xu, and K. Gui, Ceram. Int. 42, 14066 (2016). doi 10.1016/j.ceramint.2016.06.014

    Article  CAS  Google Scholar 

  110. B. Zhang, X. Zhang, C. Hong, et al., ACS Appl. Mater. Interfaces 8, 11675 (2016). doi 10.1021/acsami.6b00822

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Simonenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Simonenko, N.P., Sevastyanov, V.G. et al. ZrB2/HfB2–SiC Ultra-High-Temperature Ceramic Materials Modified by Carbon Components: The Review. Russ. J. Inorg. Chem. 63, 1772–1795 (2018). https://doi.org/10.1134/S003602361814005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602361814005X

Keywords

Navigation