Skip to main content
Log in

High-temperature composites based on the Nb–Si system reinforced with niobium silicides

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The article considers the influence of the technological regimes of melting by vacuum induction and oriented crystallization on the content of alloying elements and the structure as well as the influence of the chemical composition on the structure and the phase composition of in situ composites of a Nb–Si system alloyed with titanium, hafnium, aluminum, chromium, molybdenum, tungsten, and zirconium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Kablov, E.N., Petrushin, N.V., and Elyutin, E.S., Monocrystalline heat-resistant alloys for gas turbine engines, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Mashinostr., 2011, suppl. 2, pp. 38–52.

    Google Scholar 

  2. Kablov, E.N. and Muboyadzhyan, S.A., Heat-resistant and heat-protective coatings for high-pressure turbine blades of advanced GTE, Aviats. Mater. Tekhnol., 2012, suppl., pp. 60–70.

    Google Scholar 

  3. http://www.ultmat.onera.fr/. Accessed February 17, 2016.

  4. http://www.hysop.onera.fr. Accessed February 19, 2016.

  5. Qu, S., Wang, R., and Han, Y., Microstructure of Nb/Nb5Si3 in situ composites, Trans. Nonferrous Met. Soc. China, 2002, vol. 12, no. 4, pp. 681–684.

    Google Scholar 

  6. Kablov, E.N., Innovative developments of the All-Russian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies of their recycling until 2030,” Aviats. Mater. Tekhnol., 2015, no. 1, pp. 3–33.

    Google Scholar 

  7. Kablov, E.N., Svetlov, I.L., and Efimochkin, I.Yu., High-temperature Nb–Si composites, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Mashinostr., 2011, suppl. 2, pp. 164–173.

    Google Scholar 

  8. Kashin, D.S. and Stekhov, P.A., Protective coatings for heat-resistant niobium-based alloys, Tr. Vses. Nauchno-Issled. Inst. Aviats. Mater., 2015, no. 6, art. 1. http://www.viam-works.ru. Accessed March 11, 2016.

  9. Karpov, M.I., Vnukov, V.I., Korzhov, V.P., Stroganova, T.S., Zheltyakova, I.S., Prokhorov, D.V., Gnesin, I.B., Kiiko, V.M., Kolobov, Yu.R., Golosov, E.V., and Nekrasov, A.N., The structure and mechanical properties of a heat-resistant Nb–Si alloy of a eutectic composition obtained by direct crystallization, Deform. Razrushenie Mater., 2012, no. 12, pp. 2–8.

    Google Scholar 

  10. Sheftel’, E.N. and Bannykh, O.A., Physical-chemical and structural approaches to the creation of constructional niobium-based alloys, Tekhnol. Met., 2009, no. 5, pp. 42–49.

    Google Scholar 

  11. Sheftel’, E.N. and Bannykh, O.A., Physical-chemical and structural approaches to the creation of constructional niobium-based alloys, Tekhnol. Met., 2009, no. 6, pp. 48–53.

    Google Scholar 

  12. Svetlov, I.L., High-temperature Nb–Si composites. Part 1, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 4, pp. 307–315

    Article  Google Scholar 

  13. Svetlov, I.L., High-temperature Nb–Si composites. Part 2, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 4, pp. 316–324.

    Article  Google Scholar 

  14. Rim, J.-H., Tabaru, T., Hirai, H., Kitahara, A., and Hanada, S., Mechanical pproperties of Nb–18Si–5Mo–5Hf–2C in situ composites prepared by arc-casting method, J. Jpn. Inst. Met. Mater., 2002, vol. 31, pp. 2193–2196.

    Google Scholar 

  15. Miura, S., Murasato, Y., Ohkubo, K., Kimura, Y., Sekido, N., Mishima, Y., and Mohri, T., Microstructure control of Nb–Si doped with Zr and Mg through eutectic and eutectoid reactions and deformation behaviour, Mater. Res. Soc. Symp. Proc., 2007, vol. 980, pp. 327–332.

    CAS  Google Scholar 

  16. Yu, Q.S., Fang, H.Y., and Wong, K.Y., Effects of Ti, Al and Hf on niobium silicides formation in the Nb–Si insitu composites, Sci. China, Ser. E: Technol. Sci., 2009, vol. 52, no. 1, pp. 37–42.

    Article  Google Scholar 

  17. Zaitsev, A.K., Svetlov, I.L., Folomeikin, Yu.I., Rodin, A.O., and Bokshtein, B.S., Thermodynamic modeling of the interaction of Y2O3 with melts based on Nb–Si, Tsvetn. Metall., 2013, no. 6, pp. 14–18.

    Google Scholar 

  18. Grammenos, I. and Tsakiropoulos, P., Study of the role of Mo and Ta additions in the microstructure of Nb–18Si–5Hf silicide based alloy, Intermetallics, 2010, vol. 18b, pp. 1524–1530.

    Article  Google Scholar 

  19. Svetlov, I.L., Kuzmina, N.A., and Neyman, A.V., Microstructure of Ni/Ni3Al—NbC and Nb—Nb5Si3 eutectic composites, Inorg. Mater.: Appl. Res., 2015, vol. 6, no. 4, pp. 368–374.

    Article  Google Scholar 

  20. Timofeeva, O.B., Kolodochkina, V.G., Shvanova, N.F., and Neiman, A.V., Analysis of the microstructure of a high-temperature natural composite material based on niobium strengthened by intermetallides of niobium silicide, Aviats. Mater. Tekhnol., 2015, no. 1, pp. 60–64.

    Google Scholar 

  21. Svetlov, I.L., Kuzmina, N.A., Neiman, A.V., Ishadzhanova, I.V., Karpov, M.I., Stroganova, T.S., Korzhov, V.P., and Vnukov, V.I., Effect of the rate of solidification on the microstructure, phase composition, and strength of Nb/Nb5Si3 in-situ composites, Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 9, pp. 1146–1150.

    Article  CAS  Google Scholar 

  22. Tsakiropoulos, P., On the macrosegregation of silicon in niobium silicide based alloys, Intermetallics, 2014, vol. 55, pp. 95–101.

    Article  CAS  Google Scholar 

  23. Bewlay, B.P., Jackson, M.R., and Lipsitt, H.A., The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in situ composite, Metall. Mater. Trans. A, 1996, vol. 27, no. 12, pp. 3801–3808.

    Article  Google Scholar 

  24. Kim, W.-Y., Tanaka, H., and Hanada, S., Effect of W alloying and NbC dispersion on high temperature strength at 1773 K and room temperature fracture toughness in Nb5Si3/Nb in-situ composites, Mater. Trans., 2002, vol. 43, no. 6, pp. 1415–1418.

    Article  CAS  Google Scholar 

  25. Kim, J.-H., Tabaru, T., Yirai, H., Kitahara, A., and Hanada, S., Tensile properties of a refractory metal base in-situ composite consisting of an Nb solid solution and hexagonal Nb5Si3, Scr. Mater., 2003, vol. 48, no. 10, pp. 1439–1444.

    Article  CAS  Google Scholar 

  26. Stroganova, T.S., Karpov, M.I., Korzhov, V.P., Vnukov, V.I., Prohorov, D.V., Zheltyakova, I.S., Gnesin, I.B., and Svetlov, I.L., Effect of titanium and molybdenum on the structure and mechanical properties of an in situ composite based on the niobium-silicon system, Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 9, pp. 1151–1155.

    Article  CAS  Google Scholar 

  27. Kim, J.-H., Tabaru, T., Sakamoto, M., and Hanada, S., Mechanical properties and fracture of an Nss/Nb5Si3 in-situ composite modified by Mo and Hf alloying, Mater. Sci. Eng. A, 2004, vol. 372, pp. 137–144.

    Article  Google Scholar 

  28. Fujiku, M., Kasama, A., Tanaka, R., and Hanada, S., Effect of alloy chemistry on the high temperature strength and the room temperature fracture toughness of advanced Nb-based alloys, Mater. Trans., 2004, vol. 45, no. 2, pp. 493–501.

    Article  Google Scholar 

  29. Guo, X.P., Gao, L.M., Guan, P., Kusabiraki, K., and Fu, H.Z., Microstructure and mechanical properties of advanced niobium-based ultrahigh temperature alloy, Mater. Sci. Forum, 2007, vols. 539–543, pp. 3690–3695.

    Article  Google Scholar 

  30. Guo, X.P., Guan, P., Ding, X., Zhang, J., Kusabiraki, K., and Fu, H.Z., Unidirectional solidificatiohn of an advanced based ultrahigh temperature niobium solid solution and niobium silicide in-situ composite alloy, Non-Ferrous Met. Alloy, 2006, vol. 2, pp. 8–11.

    Google Scholar 

  31. Kim, J.-H., Tabaru, T., and Hirai, H., Effect of tungsten addition on tensile properties of refractor Nb–18Si–10Ti–10Mo–xW (x = 0, 5, 10, 150) in-situ composites at 1670 K, Met. Mater. Int., 2002, vol. 8, no. 3, pp. 233–240.

    Article  CAS  Google Scholar 

  32. Kim, J.-H., Tabaru, T., Hirai, H., Kitahara, A., and Hanada, S., Mechanical properties of Nb–18Si–5Mo–5Hf–2C in-situ composite prepared by arccasting method, Mater. Trans., 2002, vol. 43, no. 9, pp. 2201–2204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Kablov.

Additional information

Original Russian Text © E.N. Kablov, I.L. Svetlov, M.I. Karpov, A.V. Neiman, P.G. Min, F.N. Karachevtsev, 2017, published in Materialovedenie, 2017, No. 2, pp. 24–32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kablov, E.N., Svetlov, I.L., Karpov, M.I. et al. High-temperature composites based on the Nb–Si system reinforced with niobium silicides. Inorg. Mater. Appl. Res. 8, 609–617 (2017). https://doi.org/10.1134/S2075113317040104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113317040104

Keywords

Navigation