Skip to main content
Log in

Features of radiation impact on nanostructured materials

  • Materials for Aerospace Engineering
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Features of formation and migration of radiation-induced defects in carbon nanotubes (CNT) and nanostructured materials are examined. The main methods and software tools used for the simulating nanomaterial structure and space factors are described. The results of mathematical simulation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novikov, L.S., Contemporary state and perspectives of study of space vehicles interaction with surrounding media, in Model’ kosmosa. T. 2. Vozdeistvie kosmicheskoi sredy na materialy i oborudovanie kosmicheskikh apparatov (Cosmos Model. Vol. 2. Influence of Cosmic Media on Materials and Equipment of Space Vehicles), Novikov, L.S., Ed., Moscow: KDU, 2007.

    Google Scholar 

  2. Novikov, L.S. and Voronina, E.N., Perspektivy primeneniya nanomaterialov v kosmicheskoi tekhnike (Perspectives of Nanomaterials Application in Space Technique), Moscow: Univer. Kniga, 2008.

    Google Scholar 

  3. Nanoscale Science and Technology, Kelsall, R.W., Hamley, I.W., and Geoghegan, M., Eds., Wiley, 2005.

    Google Scholar 

  4. Goldberg, D., Bando, Y., Tang, Ch., and Zhi, Ch., Boron nitride nanotubes, Adv. Mater., 2007, vol. 19, pp. 2413–2432.

    Article  Google Scholar 

  5. Novikov, L.S., Radiatsionnye vozdeistviya na materialy kosmicheskoi tekhniki (Radiation Influence on Cosmic Technique Materials), Moscow: Univer. Kniga, 2010.

    Google Scholar 

  6. Suzdalev, I.P., Nanotekhnologiya. Fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology. Physics and Chemistry of Nanoclusters, Nanostructures and Nanomaterials), Moscow: Librokom, 2009.

    Google Scholar 

  7. He, H. and Pan, B., Studies on structural defects in carbon nanotubes, Front. Phys. China, 2009, vol. 4, pp. 297–306.

    Article  Google Scholar 

  8. Yang, H.-T., Yang, L., Chen, J., and Dong, J., Antiresonance effect due to Stone-Wales defect in carbon nanotubes, Phys. Lett. A, 2004, vol. 325, pp. 287–293.

    Article  CAS  Google Scholar 

  9. Kotakoski, J., Krasheninnikov, A.V., and Nordlung, K., Atomistic simulations of irradiation effects in carbon nanotubes: An overview, Radiation Effects Defects in Solids, 2007, vol. 162, nos. 3–4, pp. 157–169.

    Article  CAS  Google Scholar 

  10. Wilkins, R., Pulikkathara, M.X., Khabashesku, V.N., et al., Ground-based space radiation effects studies on singlewalled carbon nanotube materials, Proc. Mater. Res. Soc. Symp., 2005, Vol. 851.

  11. Ackland, G., Controlling radiation damage, Science, 2010, vol. 327, pp. 1587–1588.

    Article  CAS  Google Scholar 

  12. Krasheninnikov, A.V. and Nordlund, K., Ion and electron irradiation-induced effects in nanostructured materials, J. Appl. Phys., 2010, vol. 107, p. 071301.

    Article  Google Scholar 

  13. Zhang, Y. and William, J., Weber stopping of ions in nanomaterials, in Ion Beams in Nanoscience and Technology. Ser. Particle Acceleration and Detection, Hellborg, R., Whitlow, H.J., and Zhang, Y., Eds., Berlin: Springer-Verlag, 2009.

    Google Scholar 

  14. Sheinerman, A.G., Irradiation-induced amorphization processes in nanocrystalline solids, Appl. Phys., A, 2005, vol. 81, pp. 1083–1088.

    Article  Google Scholar 

  15. Andrievskii, R.A., Effect of irradiation on the properties of nanomaterials, Phys. Met. Metallogr., 2010, vol. 110, pp. 229–240.

    Article  Google Scholar 

  16. Multiscale Simulation Methods for Nanomaterials, Mohanty, S., and Ross, R., Eds., Wiley, 2008

    Google Scholar 

  17. Atomic and Ion Collisions in Solids and at Surfaces: Theory, Simulation and Applications, Smith, R., Ed., New York: Cambridge University, 2005.

    Google Scholar 

  18. Lehtinen, O., Kotakoski, J., Krasheninnikov, A.V., Tolvanen, A., Nordlund, K., and Keinonen, J., Effects of ion bombardment on a two-dimensional target: Atomistic simulations of grapheme irradiation, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 81, p. 153401.

    Article  Google Scholar 

  19. Handbook of Material Modeling, Yip, S., Ed., SpringerVerlag, 2005

    Google Scholar 

  20. Ion Beams in Nanoscience and Technology. Ser. Particle Acceleration and Detection, Hellborg, R., Whitlow, H.J., and Zhang, Y., Eds., Berlin: Springer-Verlag, 2009.

    Google Scholar 

  21. Time-Dependent Density Functional Theory, Marques, M.A.L., Ullrich C.A., Nogueira F., et al., Eds., Berlin: Springer-Verlag, 2006.

    Google Scholar 

  22. Frauenheim, T., Seifert, G., Elstner, M., Niehaus, T., Köhler, Ch., Amkreutz, M., Sternberg, M., Hajnal, Z., Carlo, A.Di., and Suhai, S., Atomistic simulations of complex materials: groundstate and excited-state properties, J. Phys.: Cond. Matter, 2002, vol. 14, pp. 3015–3047.

    CAS  Google Scholar 

  23. Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., and Nieminen, R.M., Bending the rules: Contrasting vacancy energetic and migration in graphite and carbon nanotubes, Chem. Phys. Lett., 2006, vol. 418, pp. 132–136.

    Article  CAS  Google Scholar 

  24. Krasheninnikov, A.V., Banhart, F., Li, J.X., Foster, A.S., and Nieminen, R.M., Stability of carbon nanotubes under electron irradiation: Role of tube diameter and chirality, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, pp. 125428-1–125428-6.

    Article  Google Scholar 

  25. Holmstrom, E., Toikka, L., Krasheninnikov, A.V., and Nordlund, K., Response of mechanically strained nanomaterials to irradiation: Insight from atomistic simulations, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, pp. 045420-1–045420-5.

    Google Scholar 

  26. Krasheninnikov, A.V., Miyamoto, Y., and Tomanek, D., Role of electronic excitations in ion collisions with carbon nanostructures, Phys. Rev. Lett., 2007, vol. 99, pp. 016104-1–016104-4.

    Google Scholar 

  27. Cui, F.Z., Chen, Z.J., Ma, J., Xia, G.R., and Zhai, Y., Atomistic simulation of radiation damage to carbon nanotubes, Phys. Lett. A, 2002, vol. 295, pp. 55–59.

    Article  CAS  Google Scholar 

  28. Saito, S., Takayama, A., Ito, A.M., Kenmotsu, T., and Nakamura, H., How to combine binary collision approximation and multi-body potential for molecular dynamics, Progress Nucl. Sci. Technol., 2011, vol. 2, pp. 44–50.

    Google Scholar 

  29. Kotakoski, J., Krasheninnikov, A.V., and Nordlung, K., Kinetic Monte Carlo simulations of the response of carbon nanotubes to electron irradiation, J. Comput. Theor. Nanosci., 2007, vol. 4, pp. 1153–1159.

    CAS  Google Scholar 

  30. Kotakoski, J., Jin, C.H., Lehtinen, O., Suenaga, K., and Krasheninnikov, A.V., Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, pp. 113404-1–113404-4.

    Article  Google Scholar 

  31. http://www.srim.org/SRIM/SRIM2011.htm

  32. GEANT-Detector Description and Simulation Tool, Geneva: CERN, 1993.

  33. Ibragimov, I.M., Kovshov, A.N., and Nazarov, Yu.F., Osnovy komp’yuternogo modelirovaniya nanosistem (Fundamentals of Computer Simulation of Nanosystems), St. Petersburg: Lan’, 2010.

    Google Scholar 

  34. http://accelrys.com/products/materials-studio/index.html

  35. Voronina, E.N., Novikov, L.S., and Chirskaya, N.P., Mathematical modeling of radioaction impact on advanced spacecraft materials, Bull. Russ. Acad. Sci.: Phys., 2011, vol. 75, pp. 1500–1507.

    Article  CAS  Google Scholar 

  36. Ajayan, P.M., Schadler, L.S., and Braun, P.V., Nanocomposite Science and Technology, Wiley, 2003.

    Google Scholar 

  37. Hirsch, A. and Vostrowsky, O., Functionalization of carbon nanotubes, Top Curr. Chem., 2005, vol. 245, pp. 193–237.

    CAS  Google Scholar 

  38. Groot, R.D. and Warren, P.B., Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys., 1997, vol. 107, pp. 4423–4435.

    Article  CAS  Google Scholar 

  39. Maiti, A., Wescott, J., and Kung, P., Nanotube-polymer composites: Insights from Flory-Huggins theory and mesoscale simulations, Mol. Simul., 2005, vol. 31, pp. 143–149.

    Article  CAS  Google Scholar 

  40. Chirskaya, N.P., Voronina, E.N., Mileev, V.N., Novikov, L.S., and Sinolits, V.V., Mathematical simulation of characteristics of heterogenic radiation-protective screens of space vehicles, Perspekt. Mater., 2011, no. 13, pp. 948–957.

    Google Scholar 

  41. Sadovnichy, V., Tikhonravov, A., Voevodin, Vl., and Opanasenko V., “Lomonosov”: supercomputing at Moscow State University, in Contemporary High Performance Computing: From Petascale toward Exascale, CRC Press, 2013, pp. 283–307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Novikov.

Additional information

Original Russian Text © L.S. Novikov, E.N. Voronina, N.P. Chirskaya, 2013, published in Perspektivnye Materialy, 2013, No. 11, pp. 12–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, L.S., Voronina, E.N. & Chirskaya, N.P. Features of radiation impact on nanostructured materials. Inorg. Mater. Appl. Res. 5, 107–115 (2014). https://doi.org/10.1134/S2075113314020130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113314020130

Keywords

Navigation