Skip to main content
Log in

Studies on structural defects in carbon nanotubes

  • Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

Structural defects in carbon nanotubes (CNTs) have been paid much attention, because they influence the properties of the CNTs to some extent. Among various defects in CNTs, both single vacancies and Stone-Wales (SW) defects are the simple and common ones. In this paper, we review the progress of research in these two kinds of defects in CNTs. For single vacancies, we first address their different structural features in both zigzag and armchair CNTs, and their stabilities in CNTs with different sizes and different symmetries systematically. The presence of the single vacancies in CNTs not only influences the electronic structures of the systems, but also affects the vibrational properties of the tubes. Nevertheless, being active chemically, the single vacancies in the tubes prefer to interact with adsorbates nearby, of which the interaction of the defects with hydrogen atom, hydrogen molecule and some small hydrocarbon radicals (-CH, -CH2 and -CH3) are discussed. The former is associated with H storage and the latter is of merit to improve the local structure of the defect in a CNT. For the Stone-Wales defect, we mainly focus on its stability in various CNTs. The influence of the SW defects on the conductance of CNTs and the identification of such a defect in CNT is described in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature (London), 1991, 354: 56

    Article  ADS  Google Scholar 

  2. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Ccbert, and R. E. Smalley, Nature(London), 1996, 384: 147

    ADS  Google Scholar 

  3. P. Kim and C. M. Lieber, Science, 1999, 286: 2148

    Article  Google Scholar 

  4. P. Pancharal, Z. L. Wang, D. Ugarte, and W. de Heer, Science, 1999, 283: 1513

    Article  ADS  Google Scholar 

  5. S. J. Tans, R. M. Verschueren, and C. Dekker, Nature (London), 1999, 393: 49

    ADS  Google Scholar 

  6. R. S. Friedman, N. C. McAlpine, D. S. Ricketts, D. Ham, and C. M. Lieber, Nature (London), 2005, 434: 1085

    Article  ADS  Google Scholar 

  7. M. S. Dresselhaus and P. C. Eklund, Adv. Phys., 2000, 49: 705

    Article  ADS  Google Scholar 

  8. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. W. Williams, M. Menon, K. R. Subbaswamy, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science, 1997, 275: 187

    Article  Google Scholar 

  9. A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, and Y. Nishina, Phys. Rev. Lett., 1997, 78: 4434

    Article  ADS  Google Scholar 

  10. J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, and J. E. Fischer, Science, 2000, 289: 1730

    Article  ADS  Google Scholar 

  11. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chem. Phys. Lett., 1993, 209: 77

    Article  ADS  Google Scholar 

  12. D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, Jr. J. Liu, and R. E. Smalley, Chem. Phys. Lett., 2000, 324: 213

    Article  ADS  Google Scholar 

  13. M. Volpe and F. Cleri, Chem. Phys. Lett., 2003, 371: 476

    Article  ADS  Google Scholar 

  14. O. Gulseren, T. Yildirim, and S. Ciraci, Phys. Rev. B, 2002, 66: 121401

    Google Scholar 

  15. J. C. Charlier, T. W. Ebbesen, and Ph. Lambin, Phys. Rev. B, 1996, 53: 11108

    Google Scholar 

  16. P. M. Ajayan, V. Ravikumar, and J. C. Charlier, Phys. Rev. Lett., 1998, 81: 1437

    Article  ADS  Google Scholar 

  17. A. J. Lu and B. C. Pan, Phys. Rev. Lett., 2004, 92: 105504

    Google Scholar 

  18. A. V. Krasheninnikov, K. Nordlund, M. Sirvio, E. Salonen, and J. Keinonen, Phys. Rev. B, 2001, 63: 245405

    Google Scholar 

  19. V. H. Crespi, M. L. Cohen, and A. Rubio, Phys. Rev. Lett., 1997, 79: 2093

    Article  ADS  Google Scholar 

  20. V. H. Crespi, N. G. Chopra, M. L. Cohen, A. Zettle, and S. G. Louie, Phys. Rev. B, 1996, 54: 5927

    Article  ADS  Google Scholar 

  21. A. Hansson, M. Paulsson, and S. Stafstrom, Phys. Rev. B, 2000, 62: 7639

    Article  ADS  Google Scholar 

  22. Y. F. Zhu, T. Yi, B. Zheng, and L. L. Cao, Appl. Surf. Sci., 1999, 137: 83

    Article  ADS  Google Scholar 

  23. M. Terrones, H. Terrones, F. Banhart, J. C. Charlier, and P. M. Ajayan, Science, 2000, 288: 1226

    Article  ADS  Google Scholar 

  24. J. Rossato, R. J. Baierle, A. Fazzio, and R. Mota, Nano Lett., 2005, 5: 197

    Article  ADS  Google Scholar 

  25. B. C. Pan, W. S. Yang, and J. L. Yang, Phys. Rev. B, 2000, 62: 12652

    Google Scholar 

  26. S. Lee, G. Kim, H. Kim, B. Y. Choi, J. Lee, B. W. Jeong, J. Ihm, Y. Kuk, and S. J. Kahng, Phys. Rev. Lett., 2005, 95: 166402

    Google Scholar 

  27. S. L. Zhang, S. L. Mielke, R. Khare, D. Troya, R. S. Ruoff, G. C. Schatz, and T. Belytschko, Phys. Rev. B, 2005, 71: 115403

    Google Scholar 

  28. J. Han, M. P. Anantram, R. L. Jaffe, J. Kong, and H. Dai, Phys. Rev. B, 1998, 57: 14983

    Google Scholar 

  29. D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase, A. De vita, and R. Car, Phys. Rev. Lett., 1997, 78: 2811

    Article  ADS  Google Scholar 

  30. M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. B, 1998, 57: R4277

    Article  ADS  Google Scholar 

  31. M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. Lett., 1998, 81: 4656

    Article  ADS  Google Scholar 

  32. V. H. Crespi, M. L. Cohen, and A. Rubio, Phys. Rev. Lett., 1997, 79: 2093

    Article  ADS  Google Scholar 

  33. L. Chico, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B, 1996, 54: 2600

    Article  ADS  Google Scholar 

  34. A. Rubio, Appl. Phys. A: Mater. Sci. Process, 1999, 68: 275

    Article  ADS  Google Scholar 

  35. L. G. Bulusheva, A. V. Okotrub, and D. A. Romanov, J. Phys. Chem. A, 1998, 102: 975

    Article  Google Scholar 

  36. H. Y. He, and B. C. Pan, Phys. Rev. B, 2008, 77: 073410

    Google Scholar 

  37. D. Sanchez-Portal, P. Ordejon, E. Artacho, and J. M. Soler, Int. J. Quantum Chem., 1997, 65: 453

    Article  Google Scholar 

  38. N. Troullier and J. L. Martins, Phys. Rev. B, 1991, 43: 1993

    Article  ADS  Google Scholar 

  39. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter, 2002, 14: 2745, and references therein

    Article  ADS  Google Scholar 

  40. M. T. Yin and M. L. Cohen, Phys. Rev. B, 1982, 26: 3259

    Article  ADS  Google Scholar 

  41. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865

    Article  ADS  Google Scholar 

  42. S. Guha, J. Menendez, J. B. Page, and G. B. Adams, Phys. Rev. B, 1996, 53: 13106

    Google Scholar 

  43. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B, 1998, 57: 4145

    Article  ADS  Google Scholar 

  44. K. Tada, S. Furuya, and K. Watanabe, Phys. Rev. B, 2001, 63: 155405

    Google Scholar 

  45. T. Yildirim, O. Gulseren, and S. Ciraci, Phys. Rev. B, 2001, 64: 075404

    Google Scholar 

  46. S. M. Lee, K. Hyeok, Y. H. Lee, G. Seifert, and T. Frauenheim, J. Am. Chem. Soc., 2001, 123: 5059

    Article  Google Scholar 

  47. J. S. Arellano, L. M. Molina, A. Rubio, M. J. Lopez, and J. A. Alonso, J. Chem. Phys., 2002, 117: 2281

    Article  ADS  Google Scholar 

  48. S. P. Chan, G. Chen, X. G. Gong, and Z. F. Liu, Phys. Rev. Lett., 2001, 87: 205502

    Google Scholar 

  49. M. Volpe and F. Cleri, Chem. Phys. Lett., 2003, 371: 476

    Article  ADS  Google Scholar 

  50. K. A. Williams and P. C. Eklund, Chem. Phys. Lett., 2000, 320: 352

    Article  ADS  Google Scholar 

  51. M. Shiraishi, T. Takenobu, and M. Ata, Chem. Phys. Lett., 2003, 367: 633

    Article  ADS  Google Scholar 

  52. J. J. Zhao, A. Buldum, J. Han, and J. P. Lu, Nanotechnology, 2002, 13: 195

    Article  ADS  Google Scholar 

  53. Y. C. Ma, Y. Y. Xia, M. W. Zhao, and N. M. Ying, Chem. Phys. Lett., 2002, 357: 97

    Article  ADS  Google Scholar 

  54. V. V. Simonyan, P. Diep, and J. K. Johnson, J. Chem. Phys., 1999, 111: 9778

    Article  ADS  Google Scholar 

  55. M. Boustimi, J. Baudon, P. Candori, and J. Robert, Phys. Rev. B, 2002, 65: 155402

    Google Scholar 

  56. A. J. Lu and B. C. Pan, Phys. Rev. B, 2005, 71: 165416

    Google Scholar 

  57. R. L. Zhou, H. Y. He, and B. C. Pan, Phys. Rev. B, 2007, 75: 113401

    Google Scholar 

  58. H. Y. He and B. C. Pan, Physica E, 2008, 40: 542

    Article  ADS  Google Scholar 

  59. H. Y. He and B. C. Pan, J. Phys. Chem. C, 2008, 112: 18876

    Google Scholar 

  60. T. Sato, S. Kitamura, and M. Iwatsuki, J. Vac. Sci. Technol. A, 2000, 18: 960

    Article  ADS  Google Scholar 

  61. H. M. Branz and S. B. Zhang, Mat. Res. Soc. Symp., 2001, 664: A13.3.1

  62. P. H. Zhang, P. E. Lammert, and V. H. Crespi, Phys. Rev. Lett., 1998, 81: 5346

    Article  ADS  Google Scholar 

  63. V. H. Crespi, Phys. Rev. Lett., 1999, 82: 2908

    Article  ADS  Google Scholar 

  64. M. Yoon, S. Han, G. Kim, S. Lee, S. Berber, E. Zosawa, J. Ihm, M. Terrones, F. Banhart, J. C. Charlier, N. Grobert, H. Terrones, P. M. Ajayan, and D. Tomanek, Phys. Rev. Lett., 2004, 92: 075504

    Google Scholar 

  65. M. Ouyang, J. L. Huang, C. L. Cheung, and C. M. Lieber, Science, 2001, 291: 97

    Article  ADS  Google Scholar 

  66. H. J. Choi, J. Ihm, S. G. Louie, M. L. Cohen, Phys. Rev. Lett., 2000, 84: 2917

    Article  ADS  Google Scholar 

  67. H. T. Yang, L. F. Yang, J. W. Chen, and J. M. Dong, Phys. Lett. A, 2004, 325: 287

    Article  MATH  ADS  Google Scholar 

  68. Y. Miyamoto, A. Rubio, S. Berber, M. Yoon, and D. Tomanek, Phys. Rev. B, 2004, 69: 121413(R)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-cai Pan  (潘必才).

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Hy., Pan, Bc. Studies on structural defects in carbon nanotubes. Front. Phys. China 4, 297–306 (2009). https://doi.org/10.1007/s11467-009-0021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-009-0021-y

Keywords

PACS numbers

Navigation