Skip to main content
Log in

Low-temperature synthesis of micron nitride powders of the Fe-N system

  • New Technologies for Obtaining and Processing Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The practical possibility of synthesizing micron-size corrosion-resistant powder materials based on lower and higher nitrides of the Fe-N system in the form of both a bulk composition and a “core-shell” system was implemented at relatively low temperatures. Information on the elemental and chemical composition of iron nitrides was obtained using the methods of Auger electron spectroscopy and X-ray quantitative analysis. Fe3N and Fe4N phases were identified in the volume of microcrystals in the form of compositions with unreacted α-Fe without foreign impurities in the temperature range of 300–350°C. The highest mass concentration of the Fe4N phase was observed at 350°C and a nitriding time of 60 min (α-Fe, 14.70%; Fe3N, 24.50%; and Fe4N, 60.80%). Porous nanocoatings were synthesized on the surfaces of carbonyl iron microparticles at 165°C and a synthesis time of 420 min. This nanocoating has a thickness of ∼10–15 nm and, in the first approximation, corresponds to the ∼Fe15.7N2 compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minagawa, M., Yanagihara, H., Kishimoto, M., and Kita, T., Synthesis of ɛ-FexN (2 ≤ x ≤3) submicron particles and the diffusion mechanism of nitrogen atoms, Mater. Trans., 2010, vol. 51, pp. 2173–2176.

    Article  CAS  Google Scholar 

  2. Leineweber, A., Mobility of nitrogen in ɛ-Fe3N below 150°C: The activation energy for reordering, Acta Mater., 2007, vol. 55, pp. 6651–6658.

    Article  CAS  Google Scholar 

  3. Lehrer, E., Magnetishe Untersuchungen über das System Eisen-Stickstof, Zt. Elektrochemie, 1930, vol. 37, pp. 460–473.

    Google Scholar 

  4. Jack, K.H., The occurrence and the crystal structure of α-iron nitride; A new type of interstitial alloy formed during the tempering of nitrogen-martensite, Proc. Roy. Soc., A, 1951, vol. 208, pp. 216–224.

    Article  CAS  Google Scholar 

  5. Coey, J.M.D., O’Donnell, K., Qinian, Q., Touchais, E., and Jack, K.H., The magnetization of α″-Fe16N2, J. Phys. Condens. Matter, 1994, vol. 6, pp. L23–L28.

    Article  CAS  Google Scholar 

  6. Takahashi, M., and Shoji, H.J., α″-Fe16N2 problemgiant magnetic moment or not, J. Magn. Magn. Mater., 2000, vol. 208, pp. 145–147.

    Article  CAS  Google Scholar 

  7. Kikkawa, S., Kubota, K., and Takeda, T., Particle size dependence in low temperature nitridation reaction for Fe16N2, J. Alloys Compd., 2008, vol. 449, pp. 7–10.

    Article  CAS  Google Scholar 

  8. Ji, N., Liu, X., and Wang, J.-P., Theory of giant saturation magnetization in α″-Fe16N2: Role of partial localization in ferromagnetism of 3d transition metals, New J. Phys., 2010, vol.12, pp. 1–8.

    Article  Google Scholar 

  9. Wang, J.-P., Ji, N., Liu, X., Xu, Yunhao., and Sanchez-Hanke, C., Origin of Giant Saturation Magnetization in Fe16N2 thin film, Proc. Am. Phys. Soc. Meeting, 2010.

    Google Scholar 

  10. Koyano, T. and Mizutani, U., US Patent 5330554, 1994.

  11. Masada, K., Amino, T., and Nagatomi, A., US Patent 7241501, 2007.

  12. Masada, K., Amino, T., and Nagatomi, A., US Patent 7371458, 2008.

  13. Inoue, T. and Sasaki, Y., US Patent Application 20100 035 086, 2010.

  14. Sankar, S.G., Simizu, S., Zande, B.J., and Obermyer, R.T., US Patent Application 20110059005, 2011.

  15. Gusarov, A.V. and Kovalev, E.P., Effective thermal conductivity of freely scattered and weekly baked powders. I. Model, Fiz. Khim. Obrab. Mater., 2009, no. 1, pp. 70–82.

    Google Scholar 

  16. Gusarov, A.V. and Kovalev, E.P., Model of thermal conductivity in powder beds, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 80, p. 024202.

    Article  Google Scholar 

  17. Alymov, M.I., Ankudinov, A.B., Gnedovets, A.G, et al., Low temperature nitration of iron nanopowders in ammonia atmosphere, XIX Mendeleevskii s”ezd po obshchei i prikladnoi khimii (Proc. 19th Mendeleev’s Meeting on General and Applied Chemistry), Volgograd, 2011.

    Google Scholar 

  18. Coey, J.M.D. and Smith, P.A.I., Magnetic nitrides, J. Magn. Magn. Mater., 1999, vol. 200, pp. 405–424.

    Article  CAS  Google Scholar 

  19. Kikkawa, S., Yamada, A., Masubuchi, Y., and Takeda, T., Fine Fe16N2 powder prepared by low-temperature nitridation, Mater. Res. Bull., 2008, vol. 43, p. 3352–3357.

    Article  CAS  Google Scholar 

  20. Alymov, M.I., Ankudinov, A.B., Gnedovets, A.G., and Zelenskii, V.A., Low temperature synthesis of nitrides in micro- and nanopowders of iron in ammonia flow. Physics and chemistry of ultradispersed nanosystems, Materialy X Vserossiiskoi konferentsii i Rossiiskoi molodezhnoi nauchnoi shkoly (Proc. 10th All-Russ. Conf. and Russ. Young Sci. School), Rostov-on-Don, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Kovalev.

Additional information

Original Russian Text © E.P. Kovalev, M.I. Alymov, A.B. Ankudinov, A.G. Gnedovets, V.A. Zelenskii, 2013, published in Perspektivnye Materialy, 2013, No. 7, pp. 61–66.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, E.P., Alymov, M.I., Ankudinov, A.B. et al. Low-temperature synthesis of micron nitride powders of the Fe-N system. Inorg. Mater. Appl. Res. 5, 168–172 (2014). https://doi.org/10.1134/S2075113314020105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113314020105

Keywords

Navigation