Skip to main content
Log in

Production of Powdered α-Fe2O3 with Multilevel Gradient Porosity

  • POROUS MATERIALS AND BIOMATERIALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

This article discusses methods for producing a material with gradient multilevel porosity by sintering layer-by-layer distributed α-Fe2O3 nanopowders and submicron powders. Nanopowders with an average particle size of 12 nm are obtained by coprecipitation and submicron powders in the form of hollow spheres are obtained by spray pyrolysis. The powders are consolidated by sintering in a muffle furnace, by hot pressing, and by spark plasma sintering (SPS) at various temperatures, loads, and holding times. It has been demonstrated that sintering in a muffle furnace and hot pressing do not allow one to obtain a compact sample of sufficient strength due to various activity of nano- and submicron powders. SPS produced powdered materials at holding temperatures of 700, 750, 800, and 900°C in 3 min. It has been established that a series of powders produced by SPS at 750°C is characterized by sufficient strength and an open porosity of 20% upon a total porosity of 37%. An increase in temperature in the frames of SPS leads to an increase in particle size in the bulk of nanopowders to the micron range and the partial destruction of hollow submicron spheres. While studying the phase composition of the produced samples, it has been revealed that it is identical to that of the initial powders. However, in the series of samples produced by hot pressing and SPS, the growth of crystals is observed in the bulk of nanopowders in the [001] direction of the highest electric and heat conductance along the punch axes. This is related with the temperature gradient between the bulk of nanopowders and punches and the lowest surface energy of plane (110), including the [001] direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. Hereinafter, the sintering temperature is presented by the temperature on the surface of a graphite matrix.

REFERENCES

  1. Liang Feng-Xia, Liang Lin, Zhao Xing-Yuan, Tong Xiao-Wei, Hu Ji-Gang, Lin Yi, Luo Lin-Bao, and Wu Yu-Cheng, Mesoporous anodic α-Fe2O3 interferometer for organic vapor sensing application, R. Soc. Chem. Adv., 2018, vol. 8, no. 54, pp. 31121–31128. https://doi.org/10.1039/C8RA06261G

    Article  CAS  Google Scholar 

  2. Hakim, A., Marliza, T.S., Abu Tahari, M.N., Yusop, M.R., Mohamed Hisham, M.W., and Yarmo, M.A., Development of α-Fe2O3 as adsorbent and its effect on CO2 capture, Mater. Sci. Forum, 2016, vol. 840, pp. 421–426. https://doi.org/10.4028/www.scientific.net/msf.840.421

  3. Prasad, B., Ghosh, C., Chakraborty, A., Bandyopadhyay, N., and Ray, R.K., Adsorption of arsenite (As3+) on nano-sized Fe2O3 waste powder from the steel industry, Desalination, 2011, vol. 274, pp. 105–112. https://doi.org/10.1016/j.desal.2011.01.081

    Article  CAS  Google Scholar 

  4. Qiu, M., Wang, R., and Qi, X., Hollow polyhedral α‑Fe2O3 prepared by self-assembly and its photocatalytic activities in degradation of RhB, J. Taiwan Inst. Chem. Eng., 2019, vol. 102, pp. 394–402. https://doi.org/10.1016/j.jtice.2019.05.024

    Article  CAS  Google Scholar 

  5. Xiao, C., Li, J., and Zhang, G., Synthesis of stable burger-like α-Fe2O3 catalysts: Formation mechanism and excellent photo-Fenton catalytic performance, J. Cleaner Prod., 2018, vol. 180, pp. 550–559. https://doi.org/10.1016/j.jclepro.2018.01.127

  6. Pengwei Yan, Jimin Shen, Lei Yuan, Jing Kang, Binyuan Wang, Shengxin Zhao, and Zhonglin Chen, Catalytic ozonation by Si-doped α-Fe2O3 for the removal of nitrobenzene in aqueous solution, Sep. Purif. Technol., 2019, vol. 228, p. 115766. https://doi.org/10.1016/j.seppur.2019.115766

    Article  CAS  Google Scholar 

  7. Rani, B.J., Kumar, M.P., Ravi, G., Ravichandran, S., Guduru, R.K., and Yuvakkumar, R., Electrochemical and photoelectrochemical water oxidation of solvothermally synthesized Zr-doped α-Fe2O3 nanostructures, Appl. Surf. Sci., 2019, vol. 471, pp. 733–744. https://doi.org/10.1016/j.apsusc.2018.12.061

    Article  CAS  Google Scholar 

  8. Arzaee, N.A., Noh, M.F.M., Ab Halim, A., Rahim, M.A., Mohamed, N.A., Safaei, J., Aadenan, A., Nasir, S.N.S., Ismail, A.F., and Teridi, M.A.M., Aerosol-assisted chemical vapor deposition of α-Fe2O3 nanoflowers for photoelectrochemical water splitting, Ceram. Int., 2019, vol. 45, pp. 16797–16802. https://doi.org/10.1016/j.ceramint.2019.05.219

    Article  CAS  Google Scholar 

  9. Reddy, I.N., Reddy, Ch.V., Sreedhar, A., Cho, M., Kim, D., and Shim, J., Effect of plasmonic Ag nanowires on the photocatalytic activity of Cu doped Fe2O3 nanostructures photoanodes for superior photoelectrochemical water splitting applications, J. Electroanal. Chem., 2019, vol. 842, pp. 146–160. https://doi.org/10.1016/j.jelechem.2019.04.076

    Article  CAS  Google Scholar 

  10. Fogliatto, A.A.B., Ahrens, C.H., Wendhausen, P.A.P., Santos, E.C., and Rodrigues, D., Correlation between porosity and permeability of stainless steel filters with gradient porosity produced by SLS/SLM, Rapid Prototyping J., 2020, vol. 26, no. 1, pp. 73–81. https://doi.org/10.1108/RPJ-09-2018-0224

    Article  Google Scholar 

  11. Hua Cheng, Lingxia Zheng, Chun Kwan Tsang, Jie Zhang, Wang, H.E., Yucheng Dong, Hui Li, Fengxia Liang, Zapien, J.A., and Yang Yang Li, Electrochemical fabrication and optical properties of periodically structured porous Fe2O3 films, Electrochem. Commun., 2012, vol. 20, pp. 178–181. https://doi.org/10.1016/j.elecom.2012.05.007

    Article  CAS  Google Scholar 

  12. Zhai Song, Ye Jia-Ru, Wang Nan, Jiang Lin-Hai, and Shen Qing, Fabrication of porous film with controlled pore size and wettability by electric breath figure method, J. Mater. Chem. C, 2014, vol. 2, pp. 7168–7172. https://doi.org/10.1039/C4TC01271B

    Article  CAS  Google Scholar 

  13. Žic, M., Ristić, M., and Musić, S., Monitoring the hydrothermal precipitation of α-Fe2O3 from concentrated Fe(NO3)3 solutions partially neutralized with NaOH, J. Mol. Struct., 2011, vol. 993, pp. 115–119. https://doi.org/10.1016/j.molstruc.2010.09.048

    Article  CAS  Google Scholar 

  14. Kargin, J., Mukhambetov, D., Kozlovskiy, A., and Biseken, A., Hollow hematite particles synthesized by spray pyrolysis of the spent pickling solution, Sci. Eur., 2017, vol. 18, no. 2, pp. 78–80.

    Google Scholar 

  15. Ardekani, S.R., Aghdam, A.S.R., Nazari, M., Bayat, A., Yazdani, E., and Saievar-Iraniza, E., A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter, J. Anal. Appl. Pyrolysis, 2019, vol. 141, p. 104631. https://doi.org/10.1016/j.jaap.2019.104631

    Article  CAS  Google Scholar 

  16. Kocjan, A., Logar, M., and Shen, Z., The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics, Sci. Rep., 2020, vol. 7, p. 2541. https://doi.org/10.1038/s41598-017-02760-7

    Article  CAS  Google Scholar 

  17. Ponomarev, M.A. and Loryan, V.E., Synthesis of materials of different porosity from mixtures of aluminum, boron and titanium fine powders and large granules of VT6 alloy, Proc. Int. Conference “Synthesis and Consolidation of Powder Materials”, Chernogolovka, 2018, pp. 94–99. https://doi.org/10.30826/SCPM2018018

  18. Chuvil’deev, V.N., Blagoveshchenskii, Yu.V., Boldin, M.S., Moskvicheva, A.V., Sakharov, N.V., Nokhrin, A.V., Isaeva, N.V., Shotin, S.V., Lopatin, Yu.G., Pisklov, A.V., and Kotkov, D.N., High-speed electropulse plasma sintering of nanostructured tungsten carbide: Part 1. Experiment, Russ. J. Non-Ferrous Met., 2014, vol. 55, no. 6, pp. 592–598. https://doi.org/10.3103/S1067821214060066

    Article  Google Scholar 

  19. Supattarasakda, K., Petcharoen, K., Permpool, T., Sirivat, A., and Lerdwijitjarud, W., Control of hematite nanoparticle size and shape by the chemical precipitation method, Powder Technol., 2013, vol. 249, pp. 353–359.

    Article  CAS  Google Scholar 

  20. Nidhi, S., Nasimul, S., and Bankim, R., Fundamentals of spark plasma sintering (SPS): An ideal processing technique for fabrication of metal matrix nanocomposites, in Advances in Processing and Applications, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-05327-7

    Book  Google Scholar 

  21. Chaim, R., Electric field effects during spark plasma sintering of ceramic nanoparticles, J. Mater. Sci., 2013, vol. 48, pp. 502–510. https://doi.org/10.1007/s10853-012-6764-9

    Article  CAS  Google Scholar 

  22. Warnes, B.M., Aplan, F.F., and Simkovich, G., Electrical conductivity and seebeck voltage of Fe2O3, pure and doped, as a function of temperature and oxygen pressure, Solid State Ionics, 1984, vol. 12, pp. 271–276. https://doi.org/10.1016/0167-2738(84)90156-5

    Article  CAS  Google Scholar 

  23. Seki, M., Takahashi, M., Ohshima, T., Yamahara, H., and Tabata, H., Solid-liquid-type solar cell based on α‑Fe2O3 heterostructures for solar energy harvesting, Jpn. J. Appl. Phys., 2014, vol. 53, no. 5S1, p. 05FA07. https://doi.org/10.7567/jjap.53.05fa07

  24. Manière, C., Durand, L., Brisson, E., Desplats, H., Carré, P., Rogeon, Ph., and Estournès, C., Contact resistances in spark plasma sintering: From in-situ and ex-situ determinations to an extended model for the scale up of the process, J. Eur. Ceram. Soc., 2017, vol. 37, pp. 1593–1605. https://doi.org/10.1016/j.jeurceramsoc.2016.12.010

    Article  CAS  Google Scholar 

  25. Patra Astam K., Kundu Sudipta K., Bhaumik Asim, and Kim Dukjoon, Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity, R. Soc. Chem., 2016, vol. 8, pp. 365–377. https://doi.org/10.1039/C5NR06509G

  26. Smith, D., Alzina, A., Bourret, J., Nait-Ali, B., Pennec, F., Tessier-Doyen, N., and Gonzenbach, U., Thermal conductivity of porous materials, J. Mater. Res., 2013, vol. 28, pp. 2260–2272. https://doi.org/10.1557/jmr.2013.179

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-38-90166.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Demirov, I. V. Blinkov, D. V. Kuznetsov, K. V. Kuskov, E. A. Kolesnikov or A. S. Sedegov.

Additional information

Translated by I. Moshkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirov, A.P., Blinkov, I.V., Kuznetsov, D.V. et al. Production of Powdered α-Fe2O3 with Multilevel Gradient Porosity. Russ. J. Non-ferrous Metals 62, 602–610 (2021). https://doi.org/10.3103/S1067821221050035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821221050035

Navigation