Skip to main content
Log in

Electrical and elastic properties of an array of carbon nanotubes after irradiation by high-energy electrons

  • Materials of Electronic
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The effect of the irradiation of arrays of annealed and unannealed multiwalled carbon nanotubes (CNTs) by electrons with an energy of 21 MeV and a dose of 2.2 × 1017 el/cm2 on their electrical conductivity, thermal electromotive force, and elasticity coefficient is studied. It is established that the irradiation of annealed nanotubes considerably decreases (by nearly a factor of two) their electrical conductivity and coefficient of elasticity in the material pressing direction and increases their thermal electromotive force by nearly 1.5 times. The effect of the same dose of electron irradiation on an array of unannealed CNTs also leads to an appreciable decrease in its coefficient of elasticity, but favors a considerable increase in the electrical conductivity and thermal electromotive force of the material. The observed effects are discussed in relation to the specifics of the formation of radiation defects in CNTs and their interaction with primary defects in unannealed specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carbon Nanotubes. Advanced Topics in the Synthesis, Structure, Properties and Applications, Jorio, A., Dresselhaus, G., and Dresselhaus, M.S., Eds., Berlin: Springer-Verlag, 2008.

    Google Scholar 

  2. Azarenko, N.A., Beresnev, V.M., and Pogrebnyak, A.D., Nanomaterialy, nanopokrytiya, nanotekhnologii (Nanomaterials, Nanocoatings, Nanotechnologies), Kharkov: KhNU im. V.N. Karazina, 2009.

    Google Scholar 

  3. Belenkov, E.A. and Zinatulina, Yu.A., Topological defects of graphene layers, Vesn. Chelyab. Gos. Univ., 2005, no. 25, pp. 32–38.

    Google Scholar 

  4. Krasheninnikov, A.V. and Nordlund, K., Ion and electron irradiation-induced effects in nanostructured materials, J. Appl. Phys., 2010, vol. 107, pp. 107–177.

    Article  Google Scholar 

  5. Ackland, G., Controlling radiation damage, Science, 2010, vol. 327, pp. 1587–1588.

    Article  CAS  Google Scholar 

  6. Kis, A.J., Effect of ultraviolet light irradiation on macroscopic single-walled carbon nanotube bundles, Appl. Phys. Lett., 2006, vol. 88, pp. 151905–151908.

    Article  Google Scholar 

  7. Miko, Cs., Milas, M., and Seo, J.W., Effect of electron irradiation on the electrical properties of fibers of aligned single-walled carbon nanotubes. Appl. Phys. Let., 2003, vol. 83, pp. 4622–4624.

    Article  CAS  Google Scholar 

  8. Uberuaga, B.P., Montalenti, F., and Germann, T.C., Accelerated molecular dynamics methods, in Handbook of Material Modeling, Yip, S., Ed., Springer-Verlag, 2005, pp. 629–648.

    Chapter  Google Scholar 

  9. Zhmurikov, E.I., Romanenko, A.I., and Anikeeva, O.B., Nadezhnost’ i stabil’nost’ konvektora vysokotemperaturnoi neitronnoi misheni na osnove grafitovykh kompozitov (Reliability and stability of convector of high-temperature neutron target on the basis of graphite composites), Novosibirsk: Inst. Yader. Fiz., 2005.

    Google Scholar 

  10. Ivanov, L.I., Lazorenko, V.M., Mikhailova, G.Yu., Nishchenko, M.M., Platov, Yu.M., Sadykhov, S.I.O., and Tovtin, V.I., Effect of high-energy electrons on electroconductivity and defect structure of multilayer carbon nanotubes, Perspekt. Mater., 2013, no. 1, pp. 51–52.

    Google Scholar 

  11. Anatychuk, L.I., Termoelementy i termoelektricheskie ustroistva (Thermoelements and Thermoelectric Devices), Kiev: Naukova Dumka, 1979.

    Google Scholar 

  12. Nishchenko, M.M., Mikhailova, G.Yu., Arkhipov, E.I., Koda, V.Yu., Prikhod’ko, G.P., and Sementsov, Yu.I., Electroconductivity of massive of multilayered carbon nanotubes in the process of deformation by compression, Metallofiz. Nov. Tekhnol., 2009, vol. 31, no. 4, pp. 437–443.

    CAS  Google Scholar 

  13. Novikov, L.S. and Voronina, E.N., Perspektivy primeneniya nanomaterialov v kosmicheskoi tekhnike (Perspectives of Nanomaterial Application in Space Technique), Moscow: Univer. Kniga, 2008.

    Google Scholar 

  14. Novikov, L.S. and Voronina, E.N., Peculiarities of simulation of radiation influences on nanostructures, Trudy XIII Mezhvuzovskoi nauchnoi shkoly molodykh spetsialistov “Kontsentrirovannye potoki energii v kosmicheskoi tekhnike, elektronike, ekologii i meditsine” (Proc. 13th Interinstitute Sci. School of Young Specialists “Concentrated Flows of Energy in Space Technique, Electronics, Ecology and Medicine), Moscow, 2012.

    Google Scholar 

  15. Novikov, L.S., Radiatsionnye vozdeistviya na materialy kosmicheskoi tekhniki (Radiation Influence on Space Technique Materials), Moscow: Univer. Kniga, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Anikeev.

Additional information

Original Russian Text © V.V. Anikeev, B.V. Koval’chuk, V.M. Lazorenko, G.Yu. Mikhailova, M.M. Nishchenko, V.N. Pimenov, I.M. Sidorchenko, Yu.F. Suskaya, V.I. Tovtin, 2013, published in Perspektivnye Materialy, 2013, No. 11, pp. 22–28.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikeev, V.V., Koval’chuk, B.V., Lazorenko, V.M. et al. Electrical and elastic properties of an array of carbon nanotubes after irradiation by high-energy electrons. Inorg. Mater. Appl. Res. 5, 138–142 (2014). https://doi.org/10.1134/S2075113314020051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113314020051

Keywords

Navigation