Skip to main content
Log in

Energetic Ion Bombardment of Carbon Nanotubes

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Carbon Nanotubes (CNTs) exhibit exceptional properties in terms of high strength-to-weight, high electrical conductivity, and high thermal conductivity, and have been employed as a reinforcement in various composites and other materials. Their tolerance to radiation environments may be suggested by their response to energetic ion bombardment. We discuss the effects of argon ion bombardment of both thin and thick multiwall carbon nanotube films over a range of 4 to 11 keV at fluence levels up to the order of 1021 ions/cm2. While individual carbon atoms are readily displaced from a carbon nanotube by bombardment at these energies, these nanotubes also exhibit a self-healing capability. At moderate energies and fluence, if two or more carbon nanotubes are touching and an ion strikes this point, they heal together where a junction or cross-link between them is created and the nanotubes interpenetrate. Even though some of the properties of the carbon nanotubes may be degraded by ion bombardment at non-junction regions, we have demonstrated a bulk cross-linked thin film of randomly oriented multiwall carbon nanotubes with an isotropic thermal conductivity of 2150 W/m K. At higher energies and fluence, the carbon nanotubes appear to collapse and reform aligned parallel to the incoming ion bombardment trajectory, producing high aspect ratio tapered structures. These structures are, in general, fully dense, unlike the loosely packed random carbon nanotube array from which they originated. There is also a sharp transition at the base of these structures from the dense form to the loose-packed form, suggesting that these structures may inhibit further penetration of the energetic ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Berber, Y. Kwon and D. Tomanek, PRL 84(20), 4613–4616 (2000).

    Article  CAS  Google Scholar 

  2. P. Kim, L. Shi, A. Madjumdar and P McEuen., PRL 87(21), 215502 (2001).

    Article  CAS  Google Scholar 

  3. Y. Kwon, S. Saito and D. Tomanek, Phys. Rev. B 58, R13314 (1998).

    Article  CAS  Google Scholar 

  4. K. Schwab, E. Henriksen, J. Worlock and M. Roukes, Nature 404, 974 (2000).

    Article  CAS  Google Scholar 

  5. D. Yang, Q. Zhang, G. Chen, S. Yoon, J. Ahn, S. Wang, Q. Zhou, Q. Wang and J. Li, Physical Review B 66, 165440 (2002).

    Article  Google Scholar 

  6. S. Shinde and J. Goela, High Thermal Conductivity Materials, (Springer, 2006) 227–265.

    Book  Google Scholar 

  7. A. Krasheninnikov, K. Nordlund and J. Keinonen, Physical Review B 66, 245403 (2002).

    Article  Google Scholar 

  8. A. Krasheninnikov, K. Nordlund, J. Keinonen and F. Banhart, Nucl. Instrum. Meth. B 202, 224–229 (2003).

    Article  Google Scholar 

  9. Q. Wei, J. D’Arcy-Gall, P. Ajayan and G. Ramanath, Applied Physics Letters 83, 3581 (2003).

    Article  CAS  Google Scholar 

  10. M. Loya, J. Park, L. Chen, K. Brammer, P. Bandaru and S. Jin, Nano 3(6), 449–454 (2008).

    Article  CAS  Google Scholar 

  11. E. Salonen, A. Krasheninnikov and K. Nordlund, Nucl. Instrum. Meth. B 193, 603–608 (2002).

    Article  Google Scholar 

  12. A. Krasheninnikov, K. Nordlund, and J. Keinonen, Physical Review B 65, 165423 (2002).

    Article  Google Scholar 

  13. A. Krasheninnikov, K. Nordlund, M. Sirvio, E. Salonen and J. Keinonen, Physical Review B 63, 245405 (2001).

    Article  Google Scholar 

  14. A. Krasheninnikov and K. Nordlund, Journal of Applied Physics 107, 071301 (2010).

    Article  Google Scholar 

  15. A. Krasheninnikov, K. Nordlund, P. Lehtinen, A. Foster, A. Ayuela, and R. Nieminen, Carbon 42, 1021–1025 (2004).

    Article  CAS  Google Scholar 

  16. Y. Gan, J. Kotakoski, A. Krasheninnikov, K. Nordlund and f. Banhart, New Journal of Physics 10, 023022 (2008).

    Article  Google Scholar 

  17. D. Cahill, Rev. Sci. Instrum. 61, 802 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the Center for Functional Nanomaterials of Brookhaven National Lab, Upton, NY for their assistance in preparing and analyzing CNT films under DOE contract DE-AC02-98CH10886. Funding for this project was provided by the author.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konesky, G.A. Energetic Ion Bombardment of Carbon Nanotubes. MRS Online Proceedings Library 1743, 45–50 (2015). https://doi.org/10.1557/opl.2015.351

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.351

Navigation