Skip to main content
Log in

Inheritance of misorientations and model of formation of bainite structure in low-doped steels under the influence of austenite deformation

  • Simulation of Materials and Technological Processes
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The structure and spectra of misorientation in carbide-free bainite low-carbon low-doped pipe steel are studied. It is demonstrated that the increase in the portion of low-angle misorientations in deformed steel is due to the fact that bainite inherits the deformation structure of austenite. A model of computation of the kinetics of bainite transformation of deformed austenite is proposed which facilitates forecasting of the average size of structural element with preset misorientation depending on the mode of thermomechanical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rybin, V.V., Malyshevskii, V.A., Khlusova, E.I., et al., High-Strength Steels for Cross-Country Pipelines, Voprosy Materialovedeniya, 2009, No. 3 (59), pp. 127–137.

  2. Hanlon, D.N., Sietsma, J., and van der Zwaag, S., The Effect of Plastic Deformation of Austenite on the Kinetics of Subsequent Ferrite Formation, ISIJ Int., 2001, vol. 9, pp. 1028–1036.

    Article  Google Scholar 

  3. Fujiwara, K., Okaguchi, S., and Ohtani, H., Effect of Hot Deformation on Bainite Structure in Low Carbon Steels, ISIJ Int., 1995, vol. 35, pp. 1006–1012.

    Article  CAS  Google Scholar 

  4. Kim, Y.M., Lee, H., and Kim, N.J., Transformation Behavior and Microstructural Characteristics of Acicular Ferrite in Linepipe Steels, Mater. Sci. Eng. A, 2008, vol. 478, pp. 361–370.

    Article  Google Scholar 

  5. Cizek, P., Wynne, B.P., Davies, C.H.J., Muddle, B.C., and Hodgson, P.D., Effect of Composition and Austenite Deformation on the Transformation Characterizations of Low-Carbon and Ultra-Low-Carbon Microalloyed Steels, Metall. Mater. Trans. A, 2002, vol. 33, pp. 1331–1349.

    Article  Google Scholar 

  6. Rybin, V.V., Khlusova, E.I., Nesterova, E.V., and Mikhailov, M.S., Formation of Structure and Properties of Low-Alloyed Low-Carbon Steel at Thermomechanical Treatment with Accelerated Cooling, Voprosy Materialovedeniya, 2007, No. 4 (52), pp. 329–340.

  7. Zolotorevskii, N.Yu., Nesterova, E.V., Titovets, Yu.F., and Khlusova, E.I., Model of Structure Formation at Bainite Transformation in Low-Carbon Low-Alloyed Steels, Nauchn.-Telkn. Vedom. St.-Petersb. Gos. Polytekhn. Univ., 2010, No. 4 (109), pp. 94–103.

  8. Zolotorevskii, N.Yu., Titovets, Yu.F., Samoilov, A.N., Hribernig, G., and Pichler, A., Modeling of Structure of Double-Phase Low-Carbon Chromium Steel, Metal Sci. Heat Treat., 2007, vol. 49, nos. 1–2, pp. 10–16.

    Article  Google Scholar 

  9. Titovets, Yu.F., Zolotorevskii, N.Yu., Kraevskii, A.Yu., Samoilov, A.N., Hribernig, G., and Pichler, A., Simulation of the Effect of Austenite Grain Size Scattering on the Kinetics of the γ → α Transformation, Metal Sci. Heat Treat., 2010, vol. 52, nos. 1–2, pp. 67–74.

    Article  CAS  Google Scholar 

  10. Furuhara, T., Kawata, H., Morito, S., Miyamoto, G., and Maki, T., Variant Selection in Grain Boundary Nucleation of Upper Bainite, Metall. Mater. Trans. A, 2008, vol. 39, pp. 1003–1013.

    Article  Google Scholar 

  11. Zolotorevskii, N.Yu., Nesterova, E.V., Rubtsov, A.S., and Rybin, V.V., Large-Angled Boundaries Formed at Phase Transformations, Poverkhnost’, 1982, No. 5, pp. 30–35.

  12. Lambert-Perlade, A., Gourgues, A.F., and Pineau, A., Austenite to Bainite Phase Transformation in the Heat-Affected Zone of a High Strength Low Alloy Steel, Acta Mater., 2004, vol. 52, pp. 2337–2348.

    Article  CAS  Google Scholar 

  13. Bhadeshia, H.K.D.H., Bainite in Steels, London: The Institute of Materials, 1992.

    Google Scholar 

  14. Aaronson, H.I., Spanos, G., and Reynolds, Jr. W.T., A Progress Report on the Definitions of Bainite, Scripta Mater., 2002, vol. 47, pp. 139–144.

    Article  CAS  Google Scholar 

  15. van Bohemen, S.M.C. and Sietsma, J., Modeling of Isothermal Bainite Formation Based on the Nucleation Kinetics, Int. J. Mat. Res., 2008, vol. 99, pp. 739–747.

    Article  Google Scholar 

  16. Chernyavskii, K.S., Stereologiya v metallovedenii (Stereology in Metal Science), Moscow: Metallurgiya, 1977.

    Google Scholar 

  17. Rybin, V.V., Rubtsov, A.S., and Kodzhaspirov, G.E., Sructural Transformations in Steel at Rolling with Different Degree and Discreteness of Deformation, Fiz. Met. Metalloved., 1984, vol. 57, no. 4, pp. 774–781.

    Google Scholar 

  18. Hurley, P.J., Muddle, B.C., and Hodgson, P.D., Nucleation Sites for Ultrafine Ferrite Produced by Deformation of Austenite during Single-Pass Strip Rolling, Metall. Mater. Trans. A, 2001, vol. 32, pp. 1507–1517.

    Article  Google Scholar 

  19. Rybin, V.V., Bol’shie plasticheskie deformatsii i vyazkoe razrushenie (Severe Plastic Deformations and Ductile Failure), Moscow: Metallurgiya, 1986.

    Google Scholar 

  20. Hughes, D.A. and Hansen, N., High Angle Boundaries Formed by Grain Subdivision Mechanisms, Acta Mater., 1997, vol. 45, pp. 3871–3886.

    Article  CAS  Google Scholar 

  21. Novillo, E., Hernandez, D., Gutierrez, I., and Lopez, B., Analysis of Ferrite Grain Growth Mechanisms during Transformations in a Niobium Alloyed Steel Using EBSD, Mater. Sci. Eng. A, 2004, vol. 385, pp. 83–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Nesterova, N.Yu. Zolotorevskii, Yu.F. Titovets, E.I. Khlusova, 2011, published in Voprosy Materialovedeniya, 2011, No. 4(68), pp. 17–26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesterova, E.V., Zolotorevskii, N.Y., Titovets, Y.F. et al. Inheritance of misorientations and model of formation of bainite structure in low-doped steels under the influence of austenite deformation. Inorg. Mater. Appl. Res. 3, 517–523 (2012). https://doi.org/10.1134/S2075113312060068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113312060068

Keywords

Navigation