Skip to main content
Log in

Optimization of control methods for the structure of large-size forgings of austenite steels for the equipment of nuclear power plants

  • Physical Metallurgy, Metallurgy
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The effect of the chemical composition and temperature-deformation modes of hammering on the structural state of grade 08Kh18N10T steel is investigated. The obtained data are the base for the development of a complex of technological measures directed toward the production of a homogeneous finegrained structure (no coarser than 3 points on a scale of 3 of GOST (State Standard) 5639) in large-size forgings for parts of nuclear power plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. OST (Standards) 108.109.01-92. Half-Finished Products of Vessel Details from Austenite Class Corrosion Resistant Steels. Technical Conditions.

  2. GOST (State Standards) 5639. Steels and Alloys. Methods of Detection and Determination of Grain Size

  3. Rybin, V.V., Bol’shie plasticheskie deformatsii i razrushenie metallov (Severe Plastic Deformations and Destruction of Metals), Moscow: Metallurgiya, 1986.

    Google Scholar 

  4. Bubnov, V.A., Deformation Strengthening of Austenitic Steels and Decreasing of Equipment Specific Quantity of Metal, Khimicheskoe i Neftegazovoe Mashinostroenie, 2008, No. 7, pp. 45–47.

  5. Smirnov, M.A., Tolstov, A.M., Bulanov, Yu.P., et al., Phase Structure and Properties of 12Kh18N10T Deformed Steel after Prolonged Heatings, Metalloved. Term. Obrab. Met., 1979, No. 1, pp. 29–32.

  6. Baikova, L.G., Kroshkin, A.A., and Shimelevich, I.L., Some Peculiarities of Deformed Austenitic Chromium-Nickel Steel Behavior upon Heating, in Metallovedenie. Sb. statei (Collection of Papers ‘Metal Science’), No. 5, Leningrad: Sudpromgiz, 1961.

    Google Scholar 

  7. Zav’yalov, A.S., Senchenko, M.I., and Orlova, K.B., Effect of Alloying Elements and Other Factors on Weakening and Recrystallization Temperature in Iron Alloys, in Metallovedenie. Sb. statei (Collection of Papers ‘Metal Science’), No. 4, Leningrad: Sudpromgiz, 1960.

    Google Scholar 

  8. Gorelik, S.S., Return, Polygonization and Recrystallization, in Metallovedenie i termicheskaya obrabotka stali (Metal Science and Thermal Treatment of Steel), Vol. 2, Bernshtein, M.L. and Rakhshtadt, A.G., Eds., Moscow: Metallurgiya, 1983, pp. 226–256.

    Google Scholar 

  9. Dzugutov, M.Ya., Plasticheskaya deformatsiya vysokolegirovannykh stalei i splavov (Plastic Deformation of High-Alloyed Steels and Alloys), Moscow: Metallurgiya, 1977.

    Google Scholar 

  10. Bernshtein, M.L., Zaimovskii, V.A., and Kaputkina, L.M., Termomekhanicheskaya obrabotka stali (Thermomechanical Treatment of Steel), Moscow: Metallurgiya, 1983.

    Google Scholar 

  11. Metallovedenie i termicheskaya obrabotka stali i chuguna T. 3: Termicheskaya i termomekhanicheskaya obrabotka stali i chuguna (Metal Science and Thermal Treatment of Steel and Cast Iron. Vol. 3. Thermal and Thermomechanical Treatment of Steel and Cast Iron), Rakhshtadt, A.G., Kaputkina, L.M., Prokoshkin, S.D., and Supov, A.V., Eds., Moscow: Intermet Inzhiniring, 2007.

    Google Scholar 

  12. Shestakov, I.A. and Cherkashina, N.P., Recrystallization Diagram of Hot-Rolled Steel of Kh18N10T Type for Choice of Optimal Thermotreatment Regimes, Chernaya Metallurgiya, 1984, No. 6 (962), pp. 60–61.

  13. Manahan, M.P., Kohli, R., Santucci, J., and Sipushi, P., A Phenomenological Investigation of in-Reactor Cracking of Type 304 Stainless Steel Control Rod Cladding, J. Nucl. Eng. Design, 1989, No. 113, pp. 297–321.

  14. Massoud, J.-P., Thamboch, M., and Brabec, P., et al., Influence of Neutron Spectrum on the Tensile Properties of Irradiated Austenitic Stainless Steels in Air and PWR Environment, Proc. of TSM ‘The Minerals, Metal and Materials Science’, 2005.

  15. Furutani, G., Nakajima, N., Konishi, T., and Kodama, M., Stress Corrosion Cracking of Irradiated 316 Stainless Steel, J. Nucl. Mater., 2001, No. 288, pp. 179–186.

  16. Fukuya, K., Nakano, M., Fudzhi, K., and Torimaru, T., Effect of Irradiation-Induced Segregation along Steel Grain Boundaries on Corrosion Cracking under Tension, Atomnaya Tekhnika za Rubezhom, 2005, No. 2, pp. 20–24.

  17. Alchin, V.V., Komel’kov, E.M., and Ponomarev, A.A., Improving of (08–12)Kh13 Steel Plasticity by Optimization of Chemical Structure and Heating Regimes of Ingots, Stal, 2005, No. 9, pp. 72–73.

  18. Zinchenko, V.G., Sudorgin, I.V., and Roshchin, V.E., 60KhN Steel Treatment by Complex Modificator for Large Ingots, Elektrometallurgiya, 2006, No. 1, pp. 13–16.

  19. Mineura, K. and Tanaka, K., Effect of Calcium Treatment on Hot Workability of Cr-Ni-0.7N Stainless Steel, Mater. Sci. Technol., 1990, vol. 6, pp. 743–748.

    Article  CAS  Google Scholar 

  20. Dobrynina, M.V., Filimonov, G.N., and Pavlov, V.N., Effect of Chemical Structure and Thermomechanical Treatment Regimes on 08Kh18N10T Austenitic Corrosion-Resistant Steel Deformability, Voprosy Atom. Nauki Tekhn. Ser.: Materialoved. Nov. Mater., 2008, No. 1 (70), pp. 38–46.

  21. Pickering, F.B., Physical Metallurgy and the Design of Steels, London: Appl. Sci. Publ., 1978.

    Google Scholar 

  22. Gluskin, L.Ya., Nefedov, Yu.V., and Fokin, P.A., Kh18N9 Austenitic Steel with Controlled Content of α-Phase, in Metallurgiya. Sb. statei. (Collection of Papers ‘Metal Science’), Leningrad: Sudostroenie, 1964, No. 7.

    Google Scholar 

  23. Dobrynina, M.V., Laboratory Modeling of Hot Forging Processes of Austenitic Steel, Trudy konferentsii molodykh uchenykh i spetsialistov TsNII KM “Prometey” (Proc. Conf. Young Scientists and Specialists of ‘Prometey’), St. Petersburg, 2006.

  24. Akshentseva, A.P., Metallografiya korrozionno-stoikikh stalei i splavov (Metallography of Corrosion-Resistant Steels and Alloys), Moscow: Metallurgiya, 1991.

    Google Scholar 

  25. Prakticheskoe rukovodstvo po metallografii sudostroitel’nykh materialov (Practical Guide on Metallography of Ship-Building Materials), Gorynin, I.V., Ed., Leningrad: Sudostroenie, 1982.

    Google Scholar 

  26. Filimonov, G.N., Pavlov, V.N., Loginov, V.P., and Povyshev, I.A., RF Patent 2035524, Byull. Izobret., 1995, no. 14.

  27. Filimonov, G.N., Pavlov, V.N., Dobrynina, M.V., et al., RF Patent 2293787, Byull. Izobret., 2007, no. 5.

  28. Stahlschlüssel (Key to Steel. Cross Reference Book), 2010, 22nd Ed.

  29. Stali i splavy energeticheskogo oborudovaniya. Spravochnik (Steels and Alloys of Energetic Equipment. A Handbook), Ryzhov, S.B., Ed., Moscow: Mashinostroenie, 2008.

    Google Scholar 

  30. Smith, M.K., Osnovy fiziki metallov (Metal Physics Foundations), Lyubov, B.Ya., Ed., Moscow: Metallurgizdat, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.V. Dobrynina, G.N. Filimonov, B.N. Pavlov, 2011, published in Voprosy Materialovedeniya, 2011, No. 3(67), pp. 19–37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrynina, M.V., Filimonov, G.N. & Pavlov, B.N. Optimization of control methods for the structure of large-size forgings of austenite steels for the equipment of nuclear power plants. Inorg. Mater. Appl. Res. 3, 484–496 (2012). https://doi.org/10.1134/S2075113312060032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113312060032

Keywords

Navigation