Skip to main content
Log in

Some Features of Dynamics and Attitude Control of Nanosatellites in Low Orbits

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper summarizes the results of the research on angular motion dynamics carried out by the team of the authors and some problems of attitude control of nanosatellites (NS). The features of CubeSat NS passive motion dynamics are described. Conditions for the possible emergence of resonance modes are studied and discussed. Recommendations are given allowing the requirements for mass-inertia characteristics and initial conditions of NS motion to be formulated at the design stage, aimed at the NS stable motion with regard to the required equilibrium position for a wide range of orbital altitudes. Algorithms for reorientation and stabilization of NS motion are proposed based on the solution of the inverse problem of dynamics and selection of optimal nominal attitude control programs. The results of this work are implemented in practice and may be useful to the developers of small spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Puig-Suari, J., Turner, C., and Twiggs, R.J., CubeSat: The development and launch support infrastructure for eighteen different satellite customers on one launch, 15 th AIAA/USU Conference on Small Satellites, 2001.

  2. Bouwmeester, J. and Guo, J., Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology, Acta Astronautica, 2010, vol. 67, pp. 854–862. https://doi.org/10.1016/j.actaastro.2010.06.004

    Article  Google Scholar 

  3. Puig-Suari, J., Coelho, R., and Williams, S., CubeSat design specification Rev. 12 The CubeSat program, Cal Poly SLO, 2009.

    Google Scholar 

  4. Hevner, R., Holemans, W., Puig-Suari, J., and Twiggs, R., An advanced standard for CubeSats, 25th AIAA/USU Conference on Small Satellites, 2011.

  5. Selva, D. and Krejci, D., A survey and assessment of the capabilities of Cubesats for Earth observation, Acta Astronautica, 2012, vol. 74, pp. 50–68. https://doi.org/10.1016/j.actaastro.2011.12.014

    Article  Google Scholar 

  6. Poghosyan, A. and Golkar, A., CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions, Progress in Aerospace Sciences, 2017, vol. 88, pp. 59–83. https://doi.org/10.1016/j.paerosci.2016.11.002

    Article  Google Scholar 

  7. Nanosats Database. URL: https://www.nanosats.eu/ (Accessed February 11, 2023).

  8. ScienceDirect. URL:https://www.sciencedirect.com/search?qs=nanosatellite&lastSelectedFacet=publicationTitles (Accessed February 11, 2023).

  9. URL: https://www.elibrary.ru/query_results.asp (Accessed February 11, 2023).

  10. IntechOpen. URL: https://www.intechopen. com/chapters/69962 (Accessed February 11, 2023).

  11. Belokonov, I.V., Timbai, I.A., and Orazbaeva, U.M., Special features of low-altitude aerodynamically stabilized nanosatellite movement, Izv. vuzov. Priborostroenie, 2016, vol. 59, no. 6, pp. 507–512. https://doi.org/10.17586/0021-3454-2016-59-6-507-512

    Article  Google Scholar 

  12. Barinova, E.V., Belokonov, I.V., and Timbai, I.A., Motion features of aerodynamically stabilized Cubesat 6U nanosatellites, 29th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2022, Proceedings, St. Petersburg, Concern CSRI Elektropribor, 2022. https://doi.org/10.23919/ICINS51784.2022.9815390

  13. Elisov, N.A., Kramlikh, A.V., Lomaka, I.A., et al., An attitude control by the functional series in the problem of nanosatellite reorientation, Aerospace Science and Technology, 2023, vol. 132. https://doi.org/10.1016/j.ast.2022.108038

  14. Elisov, N.A., Kramlikh, A.V., and Lomaka, I.A., An approach to the control of the nanosatellite’s longitudinal axis reorientation, 29th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2022, Proceedings, St. Petersburg, Concern CSRI Elektropribor, 2022. https://doi.org/10.23919/ICINS51784.2022.9815362

  15. Sinitsin, L.I. and Kramlikh, A.V., Synthesis of the optimal control law for the reorientation of a nanosatellite using the procedure of analytical construction of optimal regulators, J. Physics: Conference Series, 2021, vol. 1745, Is. 1. https://doi.org/10.1088/1742-6596/1745/1/012053

  16. Chekashov, A.S. and Kramlikh, A.V., Research of optimality of the nanosatellite nominal reorientation trajectory, Journal of Physics: Conference Series, 2021, vol. 1745, Is. 1. https://doi.org/10.1088/1742-6596/1745/1/012071

  17. Belokonov, I.V., Kramlikh, A.V., and Melnik, M.E., Analysis of the influence of the error of the nanosatellite design and dynamic performances on the quality of angular motion control processes, IOP Conference Series: Materials Science and Engineering, 2020, vol. 984, Issue 1. https://doi.org/10.1088/1757-899X/984/1/012016

  18. Kramlikh, A.V. and Melnik, M.E., Algorithm for reorientation of the CubeSat nanosatellites, 24th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2017, Proceedings, St. Petersburg, Concern CSRI Elektropribor, 2017. https://doi.org/10.23919/ICINS.2017.7995671

  19. Belokonov, I.V., Timbai, I.A., and Nikolaev P.N., Analysis and synthesis of motion of aerodynamically stabilized nanosatellites of the CubeSat design, Gyroscopy and Navigation, 2018, vol. 9, no. 4, pp. 287–300. https://doi.org/10.1134/S2075108718040028

    Article  Google Scholar 

  20. QB-50. URL: https://www.qb50.eu/ (Accessed November 13, 2020).

  21. Belokonov, I., Kramlikh, A., Timbai, I., and Lagno, O., Problems of satellite navigation and communications for nanosatellites launched as piggyback payload from the orbital stage of carrier rockets, 21st Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2014, Proceedings, St. Petersburg, Concern CSRI Elektropribor, 2014, pp. 407–415.

  22. Beletskii, V.V., Dvizhenie iskusstvennogo sputnika otnositel’no tsentra mass (Motion of an Artificial Satellite Relative to the Center of Mass), Moscow: Nauka, 1965.

  23. He, L., Chen, X., Kumar, K.D., Sheng, T., and Yue, C., A novel three-axis attitude stabilization method using in-plane internal mass-shifting, Aerospace Science and Technology, 2019, vol. 92, pp. 489–500. https://doi.org/10.1016/j.ast.2019.06.019

    Article  Google Scholar 

  24. Chesi, S., Gong, Q., and Romano, M., Aerodynamic three-axis attitude stabilization of a spacecraft by center-of-mass shifting, Journal of Guidance, Control, and Dynamics, 2017, vol. 40, no. 7, pp. 1613–1626. https://doi.org/10.2514/1.G002460

    Article  Google Scholar 

  25. Belokonov, I. and Timbai, I., The selection of the design parameters of the aerodynamically stabilized nanosatellite of the CubeSat standard, Procedia Engineering, 2015, vol. 104, pp. 88–96. https://doi.org/10.1016/j.proeng.2015.04.100

    Article  Google Scholar 

  26. Belokonov, I.V., Timbai, I.A., and Barinova, E.V., Design parameters selection for CubeSat nanosatellite with a passive stabilization system, Gyroscopy and Navigation, 2020, vol. 11, no. 2, pp. 149–161. https://doi.org/10.1134/S2075108720020029

    Article  Google Scholar 

  27. Sarychev, V.A. and Ovchinnikov, M.Y., Dynamics of a satellite with a passive aerodynamic attitude control system, Cosmic Research, 1994, vol. 32, no. 6, pp. 561–575.

    Google Scholar 

  28. Sarychev, V.A., Mirer, S.A., Degtyarev, A.A., and Duarte, E., Investigation of equilibria of a satellite subjected to gravitational and aerodynamic s, Celestial Mechanics and Dynamical Astronomy, 2007, vol. 97, no. 4, pp. 267–287. https://doi.org/10.1007/s10569-006-9064-3

    Article  MathSciNet  Google Scholar 

  29. Sarychev, V. A. and Gutnik, S.A., Satellite dynamics under the influence of gravitational and aerodynamic s. A study of stability of equilibrium positions, Cosmic Research, 2016, vol. 54, no. 5, pp. 388–398. https://doi.org/10.1134/S0010952516050063

    Article  Google Scholar 

  30. Barinova, E.V. and Timbai, I.A., Study of relative equilibrium positions of a dynamically symmetric Cubesat nanosatellite under aerodynamic and gravitational moments, 26th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2019, Proceedings, St. Petersburg, Concern CSRI Elektropribor, 2019. https://doi.org/10.23919/ICINS.2019.8769356

  31. Barinova, E.V. and Timbai, I.A., Relative equilibria of dynamically symmetric CubeSat nanosatellite under the action of aerodynamic and gravitational s, Vestnik of Samara University. Aerospace and Mechanical Engineering, 2019, vol. 18, no. 2, p. 21-32. https://doi.org/10.18287/2541-7533-2019-18-2-21-32

    Article  Google Scholar 

  32. Barinova, E.V. and Timbai, I.A., Determining of equilibrium positions of CubeSat nanosatellite under the influence of aerodynamic and gravitational moments, 27th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2020 – Proceedings, St. Petersburg, Concern CSRI Elektropribor, 2020. https://doi.org/10.23919/ICINS43215.2020.9133842

  33. GOST 4401-81 Atmosfera standartnaya. Parametry. Vvedenie (Standard atmosphere. Parameters. Introduction) 1981-02-27. Moscow: Izvatel’stvo standartov, 1981.

  34. Rawashdeh, S.A. and Lumpp, J.E., Aerodynamic stability for CubeSats at ISS orbit, Journal of Small Satellites, 2013, vol. 2, no. 1, pp. 85–104.

    Google Scholar 

  35. Rawashdeh, S., Jones, D., Erb, D., Karam, A., Lumpp, J.E. Jr, Aerodynamic attitude stabilization for a ram-facing CubeSat, Advances in the Astronautical Sciences, 2009, vol. 133, pp. 583–595.

    Google Scholar 

  36. Rawashdeh, S.A., Attitude analysis of small satellites using model-based simulation, International Journal of Aerospace Engineering, 2019, vol. 2019, pp. 1–11. https://doi.org/10.1155/2019/3020581

    Article  Google Scholar 

  37. Ovchinnikov, M.Yu. and Roldugin, D.S., A survey on active magnetic attitude control algorithms for small satellites, Progress in Aerospace Sciences, 2019, vol. 109. https://doi.org/10.1016/j.paerosci.2019.05.006

  38. Armstrong, J., Casey, C., Creamer, G., and Dutchover, G., Pointing control for low altitude triple CubeSat space darts, 23rd Annual AIAA/USU Conference on Small Satellites, 2009, no. 202, pp. 1–8.

  39. Psiaki, M.L., Nanosatellite attitude stabilization using passive aerodynamics and active magnetic torquing, Journal of Guidance, Control, and Dynamics, 2004, vol. 27, no. 3, pp. 347–355. https://doi.org/10.2514/1.1993

    Article  Google Scholar 

  40. Chesi, S., Gong, Q., and Romano, M., Satellite attitude control by center-of-mass shifting, Advances in the Astronautical Sciences, 2014, vol. 150, pp. 2575–2594.

    Google Scholar 

  41. Grassi M., Attitude determination and control for a small remote sensing satellite, Acta Astronautica, 1997, vol. 40, no. 9, pp. 675–681. https://doi.org/10.1016/S0094-5765(97)00023-4

    Article  Google Scholar 

  42. Lovera M. and Astolfi A., Global magnetic attitude control of spacecraft in the presence of gravity gradient, IEEE Transactions on Aerospace and Electronic Systems, 2006, vol. 42, no. 3. pp. 796–805. https://doi.org/10.1109/TAES.2006.248214

    Article  Google Scholar 

  43. Belokonov, I.V., Timbai, I.A. and Kurmanbekov, M.S., Passive gravitational aerodynamic stabilization of nanosatellite, 24th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2017, Proceedingsm, St. Petersburg, Concern CSRI Elektropribor, 2017, pp. 543–546. https://doi.org/10.23919/ICINS.2017.7995675

  44. Belokonov, I.V., Timbai, I.A. and Davydov, D.D., Passive three-axis stabilization of a nanosatellite in low-altitude orbits: Feasibility study, 25th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2018—Proceedings, St. Petersburg, Concern CSRI Elektropribor, 2018, pp. 1–4. https://doi.org/10.23919/ICINS.2018.8405939.

  45. Belokonov, I.V., Timbai, I.A. and Davydov, D.D., Passive stabilization systems for CubeSat nanosatellites: general principles and features, 26th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2019, Proceedings, St. Petersburg, Concern CSRI Elektropribor, 2019, pp. 1–4. https://doi.org/10.23919/ICINS.2019.8769434

  46. Belokonov, I.V., Timbai, I.A. and Ustyugov, E.V., Eurasian patent for invention (21) 201400132 (13) A1, Method for aerodynamic stabilization of a CubeSat and the device for its implementation, July, 2015.

  47. Yaroshevskii, V.A. Dvizhenie neupravlyaemogo tela v atmosphere (Uncontrolled Body Motion in the Atmosphere), Moscow: Mashinostroenie, 1978.

  48. Aslanov, V.S. and Boiko V.V., Nonlinear resonant motion of an asymmetrical spacecraft in the atmosphere, Cosmic Research, 1985, vol. 23, no. 3, pp. 341–347.

    Google Scholar 

  49. Zabolotnov, Y.M. and Lyubimov, V.V., Application of the method of integral manifolds for construction of resonant curves for the problem of spacecraft entry into the atmosphere, Cosmic Research, 2003, vol. 41, no. 5, pp. 453–459. https://doi.org/10.1023/A:1026046232640

    Article  Google Scholar 

  50. García-Pérez, Á., Sanz-Andrés, A., Alonso, G., and Chimeno Manguán, M., Dynamic coupling on the design of space structures, Aerospace Science and Technology, 2019, vol. 84, pp. 1035–1048. https://doi.org/10.1016/j.ast.2018.11.045

    Article  Google Scholar 

  51. Fakoor, M., Mohammad Zadeh, P., and Momeni Eskandari, H., Developing an optimal layout design of a satellite system by considering natural frequency and attitude control constraints, Aerospace Science and Technology, 2017, vol. 71, pp. 172–188. https://doi.org/10.1016/j.ast.2017.09.012

    Article  Google Scholar 

  52. Liaño, G., Castillo, J.L., and García-Ybarra, P.L., Nonlinear model of the free-flight motion of finned bodies, Aerospace Science and Technology, 2014, vol. 39, pp. 315–324.

    Article  Google Scholar 

  53. Xu, Y., Yue, B., Yang, Z., Zhao, L., and Yang, S., Study on the chaotic dynamics in yaw–pitch–roll coupling of asymmetric rolling projectiles with nonlinear aerodynamics, Nonlinear Dynamics, 2019, vol. 97, no. 4, pp. 2739–2756. https://doi.org/10.1007/s11071-019-05159-3

    Article  Google Scholar 

  54. Bardin, B.S. and Chekina, E.A., On the stability of resonant rotation of a symmetric satellite in an elliptical orbit, Regular and Chaotic Dynamics, 2016, vol. 21, no. 4, pp. 377–389. https://doi.org/10.1134/S1560354716040018

    Article  MathSciNet  Google Scholar 

  55. Bardin, B.S. and Chekina, E.A., On the constructive algorithm for stability analysis of an equilibrium point of a periodic Hamiltonian system with two degrees of freedom in the case of combinational resonance, Regular and Chaotic Dynamics, 2019, vol. 24, no. 2, pp. 127–144. https://doi.org/10.1134/S1560354719020011

    Article  MathSciNet  Google Scholar 

  56. Cheng, Y., Gómez, G., Masdemont, J.J., and Yuan, J., Analysis of the relative dynamics of a charged spacecraft moving under the influence of a magnetic field, Communications in Nonlinear Science and Numerical Simulation, 2018, vol. 62, pp. 307–338. https://doi.org/10.1016/j.cnsns.2018.02.023

    Article  MathSciNet  Google Scholar 

  57. Aleksandrov, A.Y. and Tikhonov A.A., Averaging technique in the problem of Lorentz attitude stabilization of an Earth-pointing satellite, Aerospace Science and Technology, 2020, vol. 104. https://doi.org/10.1016/j.ast.2020.105963

  58. Kurkina, E.V. and Lyubimov, V.V., Estimation of the probability of capture into resonance and parametric analysis in the descent of an asymmetric spacecraft in an atmosphere, Journal of Applied and Industrial Mathematics, 2018, vol. 12, no. 3, pp. 492–500. https://doi.org/10.1134/S1990478918030092

    Article  MathSciNet  Google Scholar 

  59. Lyubimov, V.V. and Lashin, V.S., External stability of a resonance during the descent of a spacecraft with a small variable asymmetry in the Martian atmosphere, Advances in Space Research, 2017, vol. 59, no. 6, pp. 1607–1613.

    Article  Google Scholar 

  60. Zabolotnov, M.Y., A study of oscillations near a resonance during the descent of a spacecraft in the atmosphere, Cosmic Research, 2003, vol. 41, no. 2, pp. 171–177. https://doi.org/10.1023/A:1023339215214

    Article  Google Scholar 

  61. Barinova, E.V., Belokonov, I.V., and Timbai, I.A., Study of resonant modes of CubeSat nanosatellite motion under the influence of the aerodynamic moment, 27th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2020, Proceedings, St. Petersburg, Concern CSRI Elektropribor, 2020, pp. 1–4.

  62. Barinova, E.V., Belokonov, I.V., and Timbai, I.A., Study of resonant modes of motion of a CubeSat nanosatellite with small inertia-mass asymmetry under the aerodynamic moment, 28th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2021 - Proceedings, St. Petersburg, Concern CSRI Elektropribor, 2021, pp. 1–5. https://doi.org/10.23919/ICINS43216.2021.9470875.

  63. Barinova, E.V., Belokonov, I.V., and Timbai, I.A., Preventing resonant motion modes for low-altitude CubeSat nanosatellites, Gyroscopy and Navigation, 2021, vol. 12, no. 4, pp. 350–362. https://doi.org/10.1134/S2075108721040027

    Article  Google Scholar 

  64. Platus, D.H., Dispersion of spinning missiles due to lift nonaveraging, AIAA Journal, 1977, vol. 15, no. 7, pp. 909–915. https://doi.org/10.2514/3.60733

    Article  Google Scholar 

  65. ROSCOSMOS. News. URL: https://www.roscosmos.ru/22198/ (Accessed May 20, 2023).

  66. NORAD GP Element Sets Current Data. URL: https://celestrak.com/NORAD/elements/ (Accessed May 11, 2022).

  67. Belokonov I.V., Timbai I.A., and Nikolaev P.N. Reconstruction of motion relative to the center of mass of a low-altitude nanosatellite from trajectory measurements, Proceedings of 72nd International Astronautical Congress, IAC-21, 2021, vol. B4.

  68. Lomaka, I.A., Elisov, N.A., Boltov, E.A., et al., A novel design of CubeSat deployment system for transformable structures, Acta Astronautica, 2022, vol. 197., p. 179–190. https://doi.org/10.1016/j.actaastro.2022.05.027

    Article  Google Scholar 

  69. Xing, L., Zhang, J., Liu, C., and Zhang, X., Fuzzy-logic-based adaptive event-triggered sliding mode control for spacecraft attitude tracking, Aerospace Science and Technology, 2021, vol. 108. https://doi.org/10.1016/j.ast.2020.106394

  70. Bello, Á., del Castañedo, Á., Olfe, K.S., Rodríguez, J., and Lapuerta, V., Parameterized fuzzy-logic controllers for the attitude control of nanosatellites in low earth orbits. A comparative studio with PID controllers, Expert Systems with Applications, 2021, vol. 174. https://doi.org/10.1016/j.eswa.2021.114679

  71. Song, C., Islas, G., and Schilling, K., Inverse dynamics based model predictive control for spacecraft rapid attitude maneuver, IFAC-PapersOnLine, 2019, vol. 52, pp. 111–116. https://doi.org/10.1016/j.ifacol.2019.11.078

    Article  Google Scholar 

  72. Boyarko, G.A., Romano, M., and Yakimenko, O.A., Time-optimal reorientation of a spacecraft using an inverse dynamics optimization method, Journal of Guidance, Control, and Dynamics, 2011, vol. 34, pp. 1197–1208. https://doi.org/10.2514/1.49449

    Article  Google Scholar 

  73. Yang, J. and Stoll, E., Time-optimal spacecraft reorientation with attitude constraints based on a two-stage strategy, Advances in the Astronautical Sciences, 2018, vol. 167, pp. 2967–2983.

    Google Scholar 

  74. Wang, Z. and Li, Y., Rigid spacecraft robust adaptive attitude stabilization using state-dependent indirect Chebyshev pseudospectral method, Acta Astronautica, 2020, vol. 174, pp. 94–102. https://doi.org/10.1016/j.actaastro.2020.03.042

    Article  Google Scholar 

  75. Banerjee, A., Amrr, S.M., and Nabi, M.A., A pseudospectral method based robust-optimal attitude control strategy for spacecraft, Advances in Space Research, 2019, vol. 64, pp. 1688–1700. https://doi.org/10.1016/j.asr.2019.08.008

    Article  Google Scholar 

  76. Li, J. and Xi, X.N., Time-optimal reorientation of the rigid spacecraft using a pseudospectral method integrated homotopic approach, Optimal Control Applications and Methods, 2015, vol. 36, pp. 889–918. https://doi.org/10.1002/oca.2145

    Article  MathSciNet  Google Scholar 

  77. Zhuang, Y. and Huang, H., Time-optimal trajectory planning for underactuated spacecraft using a hybrid particle swarm optimization algorithm, Acta Astronautica, 2014, vol. 94, pp. 690–698. https://doi.org/10.1016/j.actaastro.2013.06.023

    Article  Google Scholar 

  78. Fakoor, M., Nikpay, S., and Kalhor, A., On the ability of sliding mode and LQR controllers optimized with PSO in attitude control of a flexible 4-DOF satellite with time-varying payload, Advances in Space Research, 2021 vol. 67, pp. 334–349. https://doi.org/10.1016/j.asr.2020.07.010

    Article  Google Scholar 

  79. Molodenkov, A.V. and Sapunkov, Y.G., Analytical quasi-optimal solution of the slew problem for an axially symmetric rigid body with a combined performance index, J. Computer and Systems Sciences International, 2020, vol. 59, pp. 347–357. https://doi.org/10.1134/S1064230720030107

    Article  MathSciNet  Google Scholar 

  80. Molodenkov, A.V. and Sapunkov, Y.G., Analytical solution of the minimum time slew maneuver problem for an axially symmetric spacecraft in the class of conical motions, J. Computer and Systems Sciences International, 2018, vol. 57, pp. 302–318. https://doi.org/10.1134/S1064230718020120

    Article  MathSciNet  Google Scholar 

  81. Molodenkov, A.V. and Sapunkov, Y.G., Analytical quasi-optimal solution for the problem on turn maneuver of an arbitrary solid with arbitrary boundary conditions, Mechanics of Solids, 2019, vol. 54, pp. 474–485. https://doi.org/10.3103/S0025654419020110

    Article  Google Scholar 

  82. Levskii, M.V., An analytical solution to the problem of optimal control of the reorientation of a rigid body (spacecraft) using quaternions, Mechanics of Solids, 2019, vol. 54, pp. 997–1015. https://doi.org/10.3103/S002565441907001X

    Article  Google Scholar 

  83. Lee, U. and Mesbahi, M., Spacecraft reorientation in presence of attitude constraints via logarithmic barrier potentials, Proceedings of American Control Conference, 2011, pp. 450–455. https://doi.org/10.1109/ACC.2011.5991284

  84. Ermoshina, O.V. and Krishchenko, A.P., Synthesis of programmed controls of spacecraft orientation by the method of inverse dynamics problem, Izv. Ross. Akad. Nauk. Teoriya i sistemy upravleniya, 2000, vol. 39, no. 2, pp. 155–162.

  85. Storn, R. and Price, K., Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optimization, 1997, vol. 11, pp. 341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  Google Scholar 

  86. Belokonov I.V. and Lomaka, I.A., Towards in-flight identification of design parameters of a nanosatellite, Kosmicheskaya tekhnika i tekhnologii, 2022, no. 3 (38), pp. 37–52.

  87. Abrashkin, V.I., Puzin, Y.Y., Filippov, A.S., Voronov, K.E., Piyakov, A.V., Semkin, N.D., Sazonov, V.V., and Chebukov, S.Y., Uncontrolled rotational motion of the AIST small spacecraft prototype, Cosmic Research, 2017, vol. 55, no 2, p. 128–141.

    Article  Google Scholar 

  88. Belokonov I.V. and Lomaka, I.A., Methodology of parametric identification of nanosatellite angular motion model, Kosmonavtika i raketostroenie, 2020, no. 6 (117), pp. 134–145.

Download references

Funding

The work was carried out within the framework of project 0777-2020-0018 financed from the state assignment to the winners of the competition of scientific laboratories of educational institutions of higher education subordinate to the Ministry of Education and Science of Russia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Belokonov or A. V. Kramlikh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barinova, E.V., Belokonov, I.V., Elisov, N.A. et al. Some Features of Dynamics and Attitude Control of Nanosatellites in Low Orbits. Gyroscopy Navig. 14, 183–204 (2023). https://doi.org/10.1134/S2075108723030021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108723030021

Keywords:

Navigation