Skip to main content
Log in

State-of-the-Art Satellite Multi-Antenna Systems. Specific Features and Results of GNSS Compass Development

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper discusses some achievements in the development of satellite multi-antenna systems which implement the interferometric principle of determining an object attitude. The existing systems are considered, and the authors’ vision of the development trend of these systems in terms of their use in the conditions of poor reception or complete outage of signals from global navigation satellite systems (GNSS) is presented. Information about a new system being developed is given; it is conventionally called a GNSS gyrocompass and represents a combination of a measuring unit based on fiber-optic gyroscopes of tactical accuracy grade, and a multi-antenna GNSS receiver, installed on a rotary base and representing an integrated system of orientation and navigation with a single structure and information functions. The distinctive features of the GNSS compass, which overcome its disadvantages in case of poor GNSS signal, are described against the existing developments. A potential niche for GNSS compass application is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Medina, D., Vilà-Valls, J., Hesselbarth, A., Ziebold, R., and García, J., On the recursive joint position and attitude determination in multi-antenna GNSS platforms, Remote Sensing, 2020, vol. 12, 1955. https://doi.org/10.3390/rs12121955

    Article  Google Scholar 

  2. Pasynkov, V.V., Status and prospects of the global precision navigation systems (differential subsystems with the global working range), Proc. XXII St, Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Concern CSRI Elektropribor, JSC, 2015, pp. 455–457.

  3. Bisnath, S., Gao, Y., Precise Point Positioning: A powerful technique with a promising future, GPS World, 2009, vol. 20, no. 4, pp. 43–50.

    Google Scholar 

  4. Teunissen, P.J.G., Montenbruck, O. (Eds.), Handbook of Global Navigation Satellite Systems; Cham, Switzerland: Springer, 2017.

    Google Scholar 

  5. Tyapkin, V.N., Garin, E.N., Metody opredeleniya navigatsionnykh parametrov podvizhvykh sredstv s ispol’zovaniem sputnikovoi radionavigatsionnoi sistemy GLONASS (Methods for Determining the Navigation Parameters of Moving Vehicles, Using the GLONASS Satellite Radionavigation System), Krasnoyarsk: Siberian Federal University, 2012.

  6. Mikrin, E.A., Mikhailov, M.V., Rozhkov, S.N., and Semenov, A.S., The results of a flight experiment aboard the International Space Station to study the effect of multipath on navigation, attitude control and rendezvous using measurements of satellite navigation equipment, Gyroscopy and Navigation, 2012, vol. 3, no. 2, pp. 104–113. https://doi.org/10.1134/S2075108712020095

    Article  Google Scholar 

  7. Mikrin, E.A., Mikhailov, M.V., Orientatsiya, vyvedenie, sblizhenie i spusk kosmicheskikh apparatov po izmereniyam ot global’nykh sputnikovykh navigatsionnykh system (Spacecraft Orientation, Insertion, Rendezvous and Descend Using Measurements from Global Satellite Navigation Systems), Textbook, Moscow: Bauman MGTU Publisher, 2017.

  8. Ivantsevich, N.V., Dmitriev, P.P., Shebshaevich, V.S., et al., Setevye sputnikovye radionavigatsionnye sistemy (Satellite Radionavigation Network Systems), V.S. Shebshaevich Ed., 2nd Edition, Moscow: Radio i svyaz’, 1993.

  9. Teunissen, P.J.G., Integer least-squares theory for the GNSS compass, Journal of Geodesy, 2010, vol. 84, no. 7, pp. 433–447.

    Article  Google Scholar 

  10. Raskaliyev, A., Patel, S.H., Sobh, T.M., and Ibrayev, A., GNSS-based attitude determination techniques—A comprehensive literature survey, IEEE Access, 2020, vol. 8, pp. 24873–24886. https://doi.org/10.1109/ACCESS.2020.2970083

    Article  Google Scholar 

  11. MRK-101 angle determination navigation equipment, datasheet, Radiosvyaz’ Research and Production Association, https://krtz.su/node/256, cited July 13, 2023.

  12. www.navis.ru, cited July 13, 2023.

  13. Transas T-702 REF Manual, GPS Sensor Specifications, https://cirspb.ru/pdf/GPC-400_Spec.pdf, cited July 13, 2023.

  14. https://orkkniikp.ru/upload/iblock/a99 /a99c272f3960381c2d2ff937b5249ab2.pdf

  15. Farwater RK-2106, RK-2306 GNSS systems, http://www.radiocomplex.ru/files/images/article/RK-2106_2306s.pdf, cited July 13, 2023.

  16. www.sbg-systems.com, cited July 13, 2023.

  17. www.imar-navigation.de, cited July 13, 2023.

  18. https://www.kongsberg.com/maritime/products/, cited July 13, 2023.

  19. https://novatel.com/, cited July 13, 2023.

  20. www.hgnss.com, cited July 13, 2023.

  21. www.furuno.com, cited July 13, 2023.

  22. www.simrad-yachting.com, cited July 13, 2023.

  23. Berdyshev, V.P., Stuchilin, A.I., Pomazuev, O.N., Kordyukov, R.Yu., and Popov, P.G., Methodology for comparative assessment and selection of samples to navigation user equipment of satellite navigation system based on the Saati’s method of paired comparison, Nauchnyi vestnik oboronno-promyshlennogo kompleksa Rossii, 2014, no. 1, pp. 59–67.

  24. Chen, W., Yu, C., Dong, D., Cai, M., Zhou, F., Wang, Z., Zhang, L., and Zheng, Z., Formal uncertainty and dispersion of single and double difference models for GNSS-based attitude determination, Sensors, 2017, vol. 17, no. 2, p. 408. https://doi.org/10.3390/s17020408

    Article  Google Scholar 

  25. Antonovich, K.M., Ispol’zovanie sputnikovykh radionavigatsionnykh sistem v geodezii (Satellite Radionavigation Systems Application in Geodesy), in 2 volumes, vol. 1, Moscow: FGUP Kartgeotsentr, 2005.

  26. Emel’yantsev, G.I., Stepanov, A.P., Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated INS/GNSS Systems of Orientation and Navigation), V.G. Peshekhonov, Ed., St. Petersburg: Concern CSRI Elektropribor, JSC, ITMO University, 2016.

  27. Antonovich, K.M., Ispol’zovanie sputnikovykh radionavigatsionnykh sistem v geodezii (Satellite Radionavigation Systems Application in Geodesy), in 2 volumes, vol. 2, Moscow: FGUP Kartgeotsentr, 2006.

  28. Peshekhonov V.G., Stepanov O.A., Eds., Methods and Technologies for Measuring the Earth’s Gravity Field Parameters, Cham: Springer, 2022. https://doi.org/10.1007/978-3-031-11158-7

  29. Makar, A., Determination of USV’s direction using satellite and fluxgate compasses and GNSS-RTK, Sensors, 2022, vol. 22(20), 7895. https://doi.org/10.3390/s22207895

    Article  Google Scholar 

  30. Bakit’ko, R.V., Boldenkov, E.N., Bulavskii, N.T., Dvorkin, V.V., Efimenko, V.S., et al., GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS: Design and Operation Principles), A.I. Perov, V.N. Kharisov, Eds., 4th edition, Moscow: Radiotekhnika, 2010.

    Google Scholar 

  31. Blazhnov, B.A., Emel’yantsev, G.I., Zhilinskii, V.M., Korotkov, A.N., Koshaev, D.A., et al., Integrated tightly coupled inertial satellite orientation and navigation system, Gyroscopy and Navigation, 2010, vol. 1, no. 1, pp. 10–18.

    Article  Google Scholar 

  32. Groves, P.D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd ed., Boston: Artech House, 2013.

    MATH  Google Scholar 

  33. Emel’yantsev, G., Stepanov, O., Stepanov, A., Blazhnov, B., Dranitsyna, E., Evstifeev, M., Eliseev, D., and Volynskii, D., Integrated GNSS/IMU-gyrocompass with rotating IMU. Development and Test Results, Remote Sensing, 2020, vol. 12(22), 3736. https://doi.org/10.3390/rs12223736

    Article  Google Scholar 

  34. Cai Tijing, Zhao Zichao, and Zhang Chunxia, Algorithm of rotating GNSS dual antenna/MIMU tight integrated system, Piezoelectrics and Acoustooptics, 2022, vol. 44, no. 1, pp. 166–170.

    Google Scholar 

  35. Stepanov, O.A., Koshaev, D.A., The analysis of methods used in solving orientation problems by data from satellite navigation systems, Giroskopiya i navigatsiya, 1999, vol. 25, no. 2, pp. 30–55.

  36. Emel’yantsev, G.I., Stepanov, A.P., Blazhnov, B.A., and Semenov, I.V., On constructing a miniature GPS-compass for small-sized objects, Materialy XXI konferentsii pamyati N.N. Ostryakova, St. Petersburg: Concern CSRI Elektropribor, JSC, 2014, pp. 118–126.

  37. Emel’yantsev, G.I., Stepanov, O.A., Blazhnov, B.A., Stepanov, A.P., and Dranitsyna, E.V., Multipath mitigation technique for GNSS gyrocompass using phase measurements, Gyroscopy and Navigation, 2022, vol. 13, no. 2, pp. 88–96. https://doi.org/10.1134/S2075108722020031

    Article  Google Scholar 

  38. Davydenko, A.S., Method of reference phases differences in determining the spatial orientation of highly dynamic objects, Synopsis of PhD Eng. Thesis, St. Petersburg: Peter the Great St. Petersburg State Polytechnic University, 2017.

  39. Cai Tijing, Xu Qimeng, Emel’yantsev, G.I., Stepanov, A.P., Zhon Daijin, Gao Shuaipeng, Lin Yang, and Huang Junxiang, A multimode GNSS/MIMU Integrated orientation and navigation system, Proc. 26th St. Petersburg International Conference on Integrated Navigation Systems (ICINS), 2019. https://doi.org/10.23919/ICINS.2019.8769374

  40. Parkinson, B.W., Spilker, J.J., and Axelrad, P., Global Positioning System: Theory and Applications, vol. 1, 2, American Institute of Aeronautics and Astronautics, 1996.

  41. Ge, M., Gendt, G., Rothacher, M., Shi, C., and Liu, J., Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations, J. Geod., 2008, vol. 82, pp. 389–399.

    Article  Google Scholar 

  42. Teunissen, P.J.G., Integer least-squares theory for the GNSS compass, J. Geod., 2010, vol. 84, pp. 433–447.

    Article  Google Scholar 

  43. Xiao, G., Li, P., Gao, Y., and Heck, B., A unified model for multi-frequency PPP ambiguity resolution and test results with Galileo and BeiDou triple-frequency observations, Remote Sens., 2019, vol. 11, p. 116.

    Article  Google Scholar 

  44. He, H., Li, J., Yang, Y., Xu, J., Guo, H., and Wang, A., Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solut., 2014, vol. 18, pp. 393–403.

    Article  Google Scholar 

  45. Koshaev, D.A., Redundancy and lack of information in specific problems of GNSS measurement processing, Gyroscopy and Navigation, 2015, vol. 6, no. 3, pp. 172–187. https://doi.org/10.1134/S2075108715030086

    Article  Google Scholar 

  46. Hatch, R., Instantaneous ambiguity resolution, Proc. Kinematic Syst. Geodesy, Surveying, Remote Sens., Symp., Banff, AB, Canada, 1991, no. 107, pp. 299–308.

  47. Frei, E., Beutler, G., Rapid static positioning based on the fast ambiguity resolution approach FARA: Theory and first results, Manuscripta Geodaetica, 1990, vol. 15, no. 6, pp. 325–356.

    Google Scholar 

  48. Euler, H.-J., Landau, H., Fast GPS ambiguity resolution on-the-fly for real-time applications, Proc. 6th Int. Geodesy Symp. Satell. Positioning, Columbus, OH, USA, 1992, pp. 650–659.

  49. Teunissen, P.J.G., Least-squares estimation of the integer GPS ambiguities, Proc. IAG Gen. Meeting, IV Theory Methodol., Beijing, China, 1993, pp. 1–16.

  50. Chen, D., Lachapelle, G., A comparison of the FASF and least squares search algorithms for on the fly ambiguity resolution, Navigation, 1995, vol. 42, no. 2, pp. 371–390.

    Article  Google Scholar 

  51. Jung, J., Enge, P., and Pervan, B., Optimization of cascade integer resolution with three civil GPS frequencies, Proc. ION GPS, Salt Lake City, UT, USA, 2000, pp. 2191–2200.

  52. Ding, W., Sun, W., Gao, Y., anв Wu, J., Carrier phase-based precise heading and pitch estimation using a low-cost GNSS receiver, Remote Sensing, 2021, vol. 13(18), 3642. https://doi.org/10.3390/rs13183642

    Article  Google Scholar 

  53. Li, T., Zhang, H., Gao, Z., Niu, X., and El-Sheimy, N., Tight fusion of a monocular camera, MEMS-IMU, and single-frequency multi-GNSS RTK for precise navigation in GNSS-challenged environments, Remote Sens., 2019, vol. 11, 610. https://doi.org/10.3390/rs11060610

    Article  Google Scholar 

  54. Gao, Z., Shen, W., Zhang, H., Ge, M., and Niu, X., Application of Helmert variance component based adaptive Kalman filter in multi-GNSS PPP/INS tightly coupled integration, Remote Sens., 2016, vol. 8(7), 553. https://doi.org/10.3390/rs8070553

    Article  Google Scholar 

  55. Nadarajah, N., Teunissen, P.J.G., and Raziq, N., Instantaneous GPS-Galileo attitude determination: Single-frequency performance in satellite-deprived environments, IEEE Trans. Veh. Technol., 2013, vol. 62, pp. 2963–2976.

    Article  Google Scholar 

  56. https://glonass-iac.ru (GLONASS Application User Center. Information and Analytical Center of Positioning, Navigation and Timing Services), cited July 13, 2023.

  57. He, H., Li, J., Yang, Y., Xu, J., Guo, H., and Wang, A., Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning, GPS Solutions, 2014, vol. 18, pp. 393–403, https://doi.org/10.1007/s10291-013-0339-3

    Article  Google Scholar 

  58. Chen, C., Chang, G., PPPLib: An open-source software for precise point positioning using GPS, BeiDou, Galileo, GLONASS, and QZSS with multi-frequency observations, GPS Solutions, 2020, vol. 25, 18. https://doi.org/10.1007/s10291-020-01052-4

    Article  Google Scholar 

  59. Emel’yantsev, G.I., Stepanov, A.P., Dranitsyna, E.V., Blazhnov, B.A., Radchenko, D.A., Vinokurov, I.Yu., Eliseev, D.P., and Petrov, P.Yu., Dual-mode GNSS gyrocompass using primary satellite measurements, Proc. XXV Saint Petersburg International Conference on Integrated Navigation Systems (ICINS); St. Petersburg: Concern CSRI Elektropribor, JSC, 2018, pp. 1–3.

  60. Sokolov, A., Interference-resistant antenna Kometa, https://www.arms-expo.ru/news/vystavki-i-konferentsii/nepodvlastnaya-pomekham-kometa, cited July 13, 2023

  61. Aseev, A.L., Vladimirov, V.M., Fateev, Yu.L., Filippov, A.I., Shabanov, V.F., and Shepov, V.N., Accuracy of attitude angle measurements based on GLONASS/GPS signals, Kosmicheskie apparaty i tekhnologii, 2013, no. 3–4(6), pp. 29–34.

  62. NGS Database, https://www.ngs.noaa.gov/ANTCAL/LoadFile?file=ngs14.003, cited July 13, 2023.

  63. Gao, M., Liu, G., Wang, S., Xiao, G., Zhao, W., and Lyu, D., Research on tightly coupled multi-antenna GNSS/MEMS single-frequency single-epoch attitude determination in urban environment, Remote Sensing, 2021, vol. 13(14), 2710. https://doi.org/10.3390/rs13142710

    Article  Google Scholar 

  64. Zhu, J., Li, T., Wang, J., Hu, X., and Wu, M., Rate-gyro-integral constraint for ambiguity resolution in GNSS attitude determination applications, Sensors, 2013, vol. 13, pp. 7979–7999.

    Article  Google Scholar 

  65. Emel’yantsev, G., Dranitsyna, E., Stepanov, A., Blazhnov, B., Vinokurov, I., Kostin, P., Petrov, P., and Radchenko, D., Tightly-coupled GNSS-aided inertial system with modulation rotation of two-antenna measurement unit, Proc. 2017 DGON Inertial Sensors and Systems (ISS), Karlsruhe: IEEE, 2017, pp. 1–18.

    Google Scholar 

  66. Zharkov, M.V., Veremeenko, K.K., Antonov, D.A., and Kuznetsov, I.M., Attitude determination using ambiguous GNSS phase measurements and absolute angular rate measurements, Gyroscopy and Navigation, 2018, vol. 9, no. 4, pp. 277–286.

    Article  Google Scholar 

  67. Koshaev, D.A., Kalman filter-based multialternative method for fault detection and estimation, Automation and Remote Control, 2010, vol. 71, no. 5, pp. 790–802. https://doi.org/10.1134/S0005117910050061

    Article  MathSciNet  MATH  Google Scholar 

  68. Al Bitar, N., Gavrilov, A.I., and Khalaf, W., Artificial intelligence based methods for accuracy improvement of integrated navigation systems during GNSS signal outages: An analytical review, Gyroscopy and Navigation, 2020, vol. 11, no. 1, pp. 41–58. https://doi.org/10.1134/S2075108720010022

    Article  Google Scholar 

  69. Pan, C., Qian, N., Li, Z., Gao, J., Liu, Z., and Shao, K., A robust adaptive cubature Kalman filter based on SVD for dual-antenna GNSS/MIMU tightly coupled integration, Remote Sensing, 2021, vol. 13(10), 1943. https://doi.org/10.3390/rs13101943

    Article  Google Scholar 

  70. Stepanov, O.A., Litvinenko, Yu.A., Vasil’ev, V.A., Toropov, A.B., and Basin M.V., Polynomial filtering algorithm applied to navigation data processing under quadratic nonlinearities in system and measurement equations. Part 2. Solution examples, Gyroscopy and Navigation, 2021, vol. 12, no. 4, pp. 314–328. https://doi.org/10.1134/S2075108721040088

    Article  Google Scholar 

  71. Emel’yantsev, G.I., Stepanov, A.P., Blazhnov, B.A., Radchenko, D.A., Vinokurov, I.Yu., and Petrov, P.Yu., Using satellite receivers with a common clock in a small-sized GNSS compass, Proc. XXIV St. Petersburg International Conference on Integrated Navigation Systems (ICINS), Saint Petersburg: Concern CSRI Elektropribor, JSC, 2017, pp. 1–2.

  72. Emel’yantsev, G.I., Blazhnov, B.A., and Stepanov, A.P., Specific features of constructing a dual-mode GNSS gyrocompass as a tightly-coupled integrated system, Gyroscopy and Navigation, 2018, vol. 9, no. 2, pp. 97–105. https://doi.org/10.1134/S2075108718020049

    Article  Google Scholar 

  73. Zhang, C., Dong, D., Chen, W., Cai, M., Peng, Y., Yu, C., and Wu, J., High-accuracy attitude determination using single-difference observables based on multi-antenna GNSS receiver with a common clock, Remote Sensing, 2021, vol. 13(19), 3977. https://doi.org/10.3390/rs13193977

    Article  Google Scholar 

  74. Javad TRE-Quattro OEM Board Product Datasheet, https://www.javad.com/jgnss/products/oem/TRE-Quattro/specifications.html, cited July 13, 2023.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Dranitsyna.

Ethics declarations

The authors declare that they have no conflicts of inte-rest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emel’yantsev, G.I., Stepanov, A.P., Dranitsyna, E.V. et al. State-of-the-Art Satellite Multi-Antenna Systems. Specific Features and Results of GNSS Compass Development. Gyroscopy Navig. 14, 97–112 (2023). https://doi.org/10.1134/S2075108723020025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108723020025

Keywords:

Navigation