Skip to main content
Log in

Initial and Final Alignment of a Strapdown Airborne Gravimeter and Accelerometer Bias Determination

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

In strapdown airborne gravimetry, initial alignment of a strapdown inertial measurement unit (IMU) of the gravimeter is of great importance. It is performed to determine the IMU attitude angles by the measurements during the aircraft standstill before the flight. This information, in its turn, helps determine the bias of the gravimeter vertical accelerometer. After the flight the bias is determined again and the linear drift over the entire flight can be removed from the vertical accelerometer measurements. However, the measurements of inertial sensors are disturbed by uncontrolled angular motions of the IMU due to external mechanical actions on the gravimeter body during the aircraft standstill. The paper proposes an algorithm for the gravimeter IMU initial and final alignments with the determination of IMU attitude angles and biases of all three accelerometers during the standstills before and after the flight. It has been shown in the paper that the accelerometer scale factor errors can also be determined by the algorithm. The algorithm performance under the angular motions of the gravimeter has been demonstrated on experimental data. The accelerometers calibration accuracy has been evaluated by comparing with the results of another calibration algorithm and by analyzing the errors in IMU autonomous dead-reckoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Methods and Technologies for Measuring the Earth’s Gravity Field Parameters, Peshekhonov, V.G. and Stepanov, O.A., Springer, 2022. https://doi.org/10.1007/978-3-031-11158-7

  2. Peshekhonov, V.G., Stepanov, O.A., Rozentsvein, V.G., Krasnov, A.A., and Sokolov, A.V., State-of-the-art strapdown airborne gravimeters: Analysis of the development, Gyroscopy and Navigation, 2022, vol. 13, no. 4, pp. 189–209. https://doi.org/10.1134/S2075108722040101

    Article  Google Scholar 

  3. Brovkin, G.I., Kontarovich, O.R., Golovan, A.A., and Vyazmin, V.S., Results of the first Russian airborne gravimetry survey with a strapdown gravimeter, Proceedings of the 4th International Geological Geophysical Conference and Exhibition GeoEvrazia-2021. Georazvedka v sovremennykh realiyakh (GeoEurasia-2021. Geological Exploration in Modern Life), vol. 2, Tver: PoliPRESS, 2021, pp. 107–111.

  4. Jensen, T.E., Olesen, A.V., Forsberg, R., Olsson, P.-A., and Josefsson, Ö., New results from strapdown airborne gravimetry using temperature stabilization, Remote Sensing, 2019, vol. 11, no. 22, 2682. https://doi.org/10.3390/rs11222682

    Article  Google Scholar 

  5. Babayants, P.S., Brovkin, G.I., Kontarovich, O.R., Golovan, A.A., and Vyazmin, V.S., Methodological aspects of modern airborne gravimetry surveys, XXXIII konferentsia pamyati N.N. Ostryakova (33rd Conference in Memory of N.N. Ostryakov), St. Petersburg: Concern CSRI Elektropribor, 2022, pp. 154–156.

  6. Vyazmin, V.S., Golovan, A.A., Bolotin, Yu.V., Brovkin, G.I., and Kontarovich, O.R., Technologies and results of strapdown airborne gravimeter data processing in draped flight surveys based on various aircraft, XXXIII konferentsia pamyati N.N. Ostryakova (33rd Conference in Memory of N.N. Ostryakov), St. Petersburg: Concern CSRI Elektropribor, 2022, pp. 157–160.

  7. Grejner-Brzezinska, D., Toth, C., and Yi, Y., On improving navigation accuracy of GPS/INS systems, Photogrammetric Engineering and Remote Sensing, 2005, vol. 71, pp. 377–389. https://doi.org/10.14358/PERS.71.4.377

    Article  Google Scholar 

  8. Becker, D., Advanced calibration methods for strapdown airborne gravimetry, Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2016.

  9. Vyazmin, V.S., Golovan, A.A., and Bolotin, Yu.V., New strapdown airborne gravimetry algorithms: Testing with real flight data, 28 th St. Petersburg International Conference on Integrated Navigation Systems, 2021, pp. 1–8. https://doi.org/10.23919/ICINS43216.2021.9470826

  10. Barantsev, G.O., Golovan, A.A., and Kuznetsov, P.Yu., Initial alignment method for a strapdown inertial navigation system on a swing base, Moscow University Mechanics Bulletin, 2021, vol. 76, no. 5, pp. 136–141. https://doi.org/10.3103/S0027133021050022

    Article  Google Scholar 

  11. Becker, D., Nielsen, J.E., Ayres-Sampaio, D., Forsberg, R., Becker, M., and Bastos, L., Drift reduction in strapdown airborne gravimetry using a simple thermal correction, Journal of Geodesy, 2015, vol. 89, pp. 1133–1144. https://doi.org/10.1007/s00190-015-0839-8

    Article  Google Scholar 

  12. Emel’yantsev, G.I. and Stepanov, A.P., Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated INS/GNSS Orientation and Navigation Systems), Peshekhonov, V.G., Ed., St. Petersburg: Concern CSRI Elektropribor, 2016.

    Google Scholar 

  13. Vavilova, N.B., Golovan, A.A. and Parusnikov, N.A., Matematicheskie osnovy inertsial’nykh navigatsionnykh sistem (Mathematical Foundations of Inertial Navigation Systems), Moscow: Moscow State University, 2020.

  14. Golovan, A.A., Barantsev, G.O., Kuznetsov, P.Yu., Nekrasov, A.V., and Shaimardanov, I.Kh., Studying the accuracy characteristics of SINS initial alignment algorithms. Results of full-scale tests of the navigation system, XXXII konferentsia pamyati N.N. Ostryakova (32nd Conference in Memory of N.N. Ostryakov), St. Petersburg: Concern CSRI Elektropribor, 2020, pp. 89−92.

  15. Panahandeh, G., Skog, I., and Jansson, M., Calibration of the accelerometer triad of an inertial measurement unit, maximum likelihood estimation and Cramér-Rao bound, Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, 2010, pp. 1–6.

  16. Fong, W.T., Ong, S.K., and Nee, A.Y.C., Methods for in-field user calibration of inertial measurement unit without external equipment, Measurement Science and Technology, 2008, vol. 19, no. 8, pp. 1–12. https://doi.org/10.1088/0957-0233/19/8/085202

    Article  Google Scholar 

  17. Matasov, A.I., Variational problems for calibrating an accelerometer unit, Automation and Remote Control, 2019, vol. 80, pp. 2135–2151. https://doi.org/10.1134/S000511791912004X

    Article  MathSciNet  MATH  Google Scholar 

  18. https://www.imar-navigation.de/

  19. https://www.aerogeo.ru.

  20. Golovan, A.A. and Vavilova, N.B., Satellite navigation. Raw data processing for geophysical applications, Journal of Mathematical Sciences, 2007, vol. 146, no. 3, pp. 5920–5930. https://doi.org/10.1007/s10958-007-0406-9

    Article  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewers for the helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Vyazmin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyazmin, V.S., Golovan, A.A. & Govorov, A.D. Initial and Final Alignment of a Strapdown Airborne Gravimeter and Accelerometer Bias Determination. Gyroscopy Navig. 14, 48–55 (2023). https://doi.org/10.1134/S2075108723010091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108723010091

Key words:

Navigation