Skip to main content
Log in

Multipath Mitigation Technique for GNSS Gyrocompass Using Phase Measurements

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper focuses on the methods to reduce the satellite signal multipath effect on the accuracy of attitude parameters, in particular, the true heading, generated by the designed marine GNSS gyrocompass—INS/GNSS system with the single-axis rotation of the antenna and IMU units. Test results for the compass prototype model have been provided, with the artificial distortions created by the GNSS signal reflector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Parkinson, B.W., Spilker, J.J., and Axelrad, P., Global Positioning System: Theory and Applications, American Institute of Aeronautics and Astronautics, 1996, vols. I, II.

    Google Scholar 

  2. Stepanov, O.A. and Koshaev, D.A., Studying the attitude determination methods using satellite systems, Giroskopiya i navigatsiya, 1999, no. 2, pp. 30–55.

  3. Farrell, J.A. and Givargis, T., Differential GPS reference station algorithm—Design and analysis, IEEE Transactions on Control Systems Technology, May 2000, vol. 8, no. 3.

  4. Wagner, J.F. and Kasties, G., Improving the GPS/INS integrated system performance by increasing the distance between GPS antennas and inertial sensors, ION NTM 2002, 28-30 January 2002, San Diego, CA.

    Google Scholar 

  5. Li, Y., Zhang, K., and Grenfell, R., Improved Knight Method based on narrowed search space for instaneous GPS attitude determination, Navigation: Journal of The Institute of Navigation, 2005, vol. 52, no. 2, pp. 111–119.

    Article  Google Scholar 

  6. Hirokawa, R. and Ebinuma, T., A low-cost tightly coupled GPS/INS for small UAVs augmented with multiple GPS antennas, Navigation: Journal of The Institute of Navigation, 2009, vol. 56, no. 1, pp. 35–44.

    Article  Google Scholar 

  7. Grewal, M.S., Andrews, A.P., and Bartone, C.G., Global Navigation Satellite Systems, Inertial Navigation, and Integration, Wiley, 2013, third edition.

    Google Scholar 

  8. Emel’yantsev, G.I., Stepanov, A.P., Dranitsyna, E.V., Blazhnov, B.A., Radchenko, D.A., Vinokurov, I.Yu., Eliseev, D.P., and Petrov, P.Yu., Dual-mode GNSS gyrocompass using primary satellite measurements, 25th Anniversary St. Petersburg International Conference on Integrated Navigation Systems, 2018, pp. 39–41.

  9. Cai, T., Xu, Q., Emel’yantsev, G. I., Stepanov, A.P., Zhou, D., Gao, Sh., Liu, Y., and Huang, Y., A multimode GNSS/MIMU integrated orientation and navigation system, 26th St. Petersburg International Conference on Integrated Navigation Systems, 2019.

  10. Mikhailov, S., Effect of multipath of radio waves from the navigation satellite on the GPS receiver positioning accuracy, Besprovodnye tekhnologii, 2006, no. 2, pp. 60–71.

  11. Xu, G., GPS Theory, Algorithms and Applications, 2007, Berlin/Heidelberg: Springer, pp. 48–62, second edition.

    Google Scholar 

  12. Trajkovski, K.K., Sterle, O., and Stopar, B., Sturdy positioning with high sensitivity GPS sensors under adverse conditions, Sensors, 2010, vol. 10, pp. 8332−8347.https://doi.org/10.3390/s100908332

    Article  Google Scholar 

  13. Ray, J. K., Cannon, M.E., and Fenton, P., Code range and carrier phase multipath mitigation using SNR, range and phase measurements in a multi-antenna system, Proceedings of ION GPS-99, Nashville, September 1999.

  14. Tranquilla, J.M., Carr, J.P., and Al-Rizzo, H.M., Analysis of a choke ring ground plane for multipath control in Global Positioning System (GPS), Proceedings of ION GPS-99, Nashville, September 1999.

  15. Van Dierendonck, A.J., Fenton, P., and Ford, T., Theory and performance of narrow correlator spacing in a GPS receiver, Navigation, 1992, vol. 39, no. 3.

  16. Irsigler, M. and Eissfeller, B., Comparison of multipath mitigation techniques with consideration of future signal structures, Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS/GNSS 2003, September 2003, Portland.

  17. McGraw, G.A. and Braasch, M.S., GNSS multipath mitigation using gated and high resolution correlator concept, Proceedings of the National Technical Meeting of the Satellite Division of the Institute of Navigation ION-NTM99, January 1999, San Diego.

  18. Townsend, S. and Fenton, P.A., Practical approach to the reduction of pseudorange multipath errors in a L1 GPS receiver, Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation ION-GPS 94, September 1994, Salt Lake City.

  19. Mikhailov, N.V. and Nikandrov, A.V., Identification and mitigation of multipath in GNSS receivers using cluster analysis methods, Gyroscopy and Navigation, 2012, vol. 3, pp. 20–27.

    Article  Google Scholar 

  20. Suzuki, T. and Amano, Y., NLOS multipath classification of GNSS signal correlation output using machine learning, Sensors, 2021, vol. 21, no. 7, 2503.

    Article  Google Scholar 

  21. Yedukondalu, K., Sarma, A.D., and SatyaSrinivas, V., Estimation and mitigation of GPS multipath interference using adaptive filtering, Progress in Electromagnetics Research M, 2011, vol. 21, pp. 133–148.

    Article  Google Scholar 

  22. Dubinko, T.Yu. and Seliverstov, A.S., A software method to improve the ship attitude determination accuracy by GNSS, Navigatsiya i gidrografiya, 2016, no. 46, pp. 14–19.

  23. Davydenko, A.S., Method of reference phase differences in attitude determination for highly dynamical objects, Extended abstract of Cand. Sci. Dissertation, St. Petersburg State Polytechnic University, 2017, https://elib.spbstu.ru/dl/2/r17-60.pdf/download/r17-60.pdf.

  24. Li, T., Zhang, H., Gao, Z., Niu, X., and El-Sheimy, N., Tight fusion of a monocular camera, MEMS-IMU, and single-frequency multi-GNSS RTK for precise navigation in GNSS-challenged environments, Remote Sensing, 2019, vol. 11, 610.https://doi.org/10.3390/rs11060610

    Article  Google Scholar 

  25. Ali, K., Chen, X., Dovis, F., De Castro, D., and Fernández, A.J., Multipath estimation in urban environments from joint GNSS receivers and LiDAR sensors, Sensors, 2012, vol. 12, pp. 14592–14603. https://doi.org/10.3390/s121114592

    Article  Google Scholar 

  26. Perov, A. and Shatilov, A., Deeply integrated GNSS/gyro attitude determination system, Sensors, 2020, vol. 20, 2203.https://doi.org/10.3390/s20082203

    Article  Google Scholar 

  27. https://www.furuno.com/en/products/compass.

  28. https://www.hemispheregnss.com/products/smart-antennas/.

  29. Chiang, K.-W., Duong, T.T., and Liao, J.-K., The performance analysis of a real-time integrated INS/GPS vehicle navigation system with abnormal GPS measurement elimination, Sensors, 2013, vol. 13, pp. 10599–10622.https://doi.org/10.3390/s130810599

    Article  Google Scholar 

  30. Hinüber, E.L.V., Reimer, C., Schneider, T., and Stock, M., INS/GNSS integration for aerobatic flight applications and aircraft motion surveying, Sensors, 2017, vol. 17, p. 941. https://doi.org/10.3390/s17050941

    Article  Google Scholar 

  31. Emel’yantsev, G., Stepanov, O., Stepanov, A., Blazhnov, B., Dranitsyna, E., Evstifeev, M., Eliseev, D., and Volynskiy, D., Integrated GNSS/IMU-gyrocompass with rotating IMU. Development and test results, Remote Sensing, 2020, vol. 12, p. 3736.

    Article  Google Scholar 

  32. https://www.fizoptika.ru/catalog.

  33. Emel’yantsev, G.I. and Stepanov, A.P., Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated INS/GNSS Orientation and Navigation Systems), St. Petersburg: Concern CSRI Elektropribor, 2016.

  34. Antonovich, K.M., Ispol’zovanie sputnikovykh radionavigatsionnykh sistem v geodezii (Application of GNSS to Geodesy), vol. 1, Moscow: Kartgeotsentr, 2005.

  35. Antonovich, K.M., Ispol’zovanie sputnikovykh radionavigatsionnykh sistem v geodezii (Application of GNSS to Geodesy), vol. 2, Moscow: Kartgeotsentr, 2006.

  36. http://optolink.ru/documents/Publications/Our/ ИHC2013-Oптoлинк-BOГ.pdf

  37. Medina, D., Li, H., Vilà-Valls, J., and Closas, P., Robust filtering techniques for RTK positioning in harsh propagation environments, Sensors, 2021, vol. 21, 1250.https://doi.org/10.3390/s21041250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Dranitsyna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emel’yantsev, G.I., Blazhnov, B.A., Stepanov, O.A. et al. Multipath Mitigation Technique for GNSS Gyrocompass Using Phase Measurements. Gyroscopy Navig. 13, 88–96 (2022). https://doi.org/10.1134/S2075108722020031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108722020031

Keywords:

Navigation