Skip to main content
Log in

Thermal Zero Drifts in Magneto-Optical Zeeman Laser Gyroscopes

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper is devoted to the current problem of increasing the accuracy of magneto-optical laser gyros while maintaining their stable operation in real operating conditions. The problem is considered and studied by the example of the magneto-optical Zeeman laser gyroscope, which is one of the effective types of laser gyroscopes. The development and improvement of the technology for creating this type of gyroscopes makes it possible to significantly reduce the sources of the gyroscope zero drift and yet, retain the other properties and performance parameters. The study and validation of the possibility of a significant reduction in the gyroscope key control currents, such as the pumping currents of the active medium and the control currents of frequency bias, will increase the measuring accuracy of the gyroscope and, accordingly, the accuracy of navigation systems based on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Goncharov, V.M., Zaitsev, A.V., Lupanchuk, V.Yu., Improving the methods of coordinatometry of an unmanned aerial vehicle under conditions of anomalous (distorted) satellite signals, Vestnik Moskovskogo aviatsionnogo instituta, 2020, vol. 27, no. 4, pp. 206–221. https://doi.org/10.34759/vst-2020-4-206-221

  2. Pogosyan, M.A. and Vereikin, A.A., Aircraft motion and position control in automatic landing systems: Analytical review, Vestnik Moskovskogo Aviatsionnogo Instituta, 2020, vol. 27, no. 3, pp. 7–22. https://doi.org/10.34759/vst-2020-3-7-22

  3. Matveev, V.V., Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh sistem (Fundamentals of design of strapdown inertial navigation systems), St. Petersburg: Concern CSRI Elektropribor, 2009.

  4. Bazhenov, N.G., Filina, O.A., and Ozerova, E.Yu., Using a single-axis gyrostabilizer for a gyroscopic stabilization system in autonomous control systems, Vestnik Moskovskogo Aviatsionnogo Instituta, 2018, vol. 25, no. 4, p. 202.

  5. Gibson, C., Flueckiger, K., Hopkins, R., and Barbour, N., Demonstrating practical inertial navigation: The beginnings and beyond, AIAA Guidance, Navigation, and Control (GNC) Conference, 2013.

    Google Scholar 

  6. Lukyanov, D., Filatov, Yu., Golyaev, Yu., Schreiber, K.-U., and Perlmutter, M., 50th anniversary of the laser gyro, 20th Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2013, pp. 36–49.

  7. Aronowitz, F., The laser gyro-tutorial review, Proc. SPIE – The International Society for Optical Engineering, 1978, vol. 157, pp. 2–6.

  8. Barbour, N. and Schmidt, G., Inertial sensor technology trends, IEEE Sensors Journal, 2001, vol. 1, no. 4, pp. 332–339.

    Article  Google Scholar 

  9. Merzlikin, A.M. and Puzko, R.S., Mode locking suppression in a magneto-optical gyro, Scientific Reports, 2020, vol. 10(1), 19490.

    Article  Google Scholar 

  10. Jie Zheng, Xinyong Dong, Peng Zu, Junhua Ji, Haibin Su, and Perry Ping Shum, Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings, Applied Physics Letters, 2013, vol. 103, no. 18, id. 183511 (4 pages).

  11. Peng Zu, Chi Chiu Chan, Tianxun Gong, Yongxing Jin, Wei Chang Wong, and Xinyong Dong, Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid, Applied Physics Letters, 2012, vol. 101, no. 24, id. 241118 (4 pages).

  12. Guerrero, H., Pérez del Real, R., Fernández de Caleya, R., and Rosa, G., Magnetic field biasing in Faraday effect sensors, Applied Physics Letters, 1999, vol.74, no. 24, id. 3702.

  13. Azarova, V.V., Golyaev, Yu.D., and Savel’ev, I.I., Zeeman laser gyroscopes, Kvantovaya elektronika, 2015, vol. 45, no. 2, pp. 171−179.

  14. Belov, A.V. and Solovieva, T.I., Intellectual ring laser quality control system – key component of ring lasers science-based production, Procedia Computer Science, 2016, vol. 96, pp. 456–464.

    Article  Google Scholar 

  15. Kuznetsov, E., Golyaev, Y., Kolbas, Y., Soloveva, T., and Kurdybanskaia, A., The method of intelligent computer simulation of laser gyros behavior under vibrations to ensure their reliability and cost-effective development and production, Proc. SPIE – The International Society for Optical Engineering, 2020, 11523, 115230B.

  16. Wu, F., Zhang, M.-H., Fu, X., Guo, X., Wang, J.-L., and Wang, J.-X., Design of AC laser frequency stabilization system for space three-axis mechanical dithering laser gyro, Zhongguo Guanxing Jishu Xuebao, 2017, vol. 25, no. 2, pp. 265–268.

    Google Scholar 

  17. Vittorio, M.N. Passaro, Antonello Cuccovillo, Lorenzo Vaiani, Martino De Carlo, and Carlo Edoardo Campanella, Gyroscope Technology and Applications: A Review in the Industrial Perspective, Sensors, 2017, vol. 17 (10), 2284.https://doi.org/10.3390/s17102284

  18. Kuznetsov, A., Kolbas, E., Kofanov, Y., Kuznetsov, N., and Soloveva, T., Method of computer simulation of thermal processes to ensure the laser gyros stable operation, Mechanisms and Machine Science, 2020, vol. 75, pp. 295–299.

    Article  Google Scholar 

  19. Jun Weng, Xiaoyun Bian, Ke Kou, and Tianhong Lian, Optimization of ring laser gyroscope bias compensation algorithm in variable temperature environment, Sensors, 2020, 20(2), 377. https://doi.org/10.3390/s20020377

    Article  Google Scholar 

  20. Chen Yang, Yuanwen Cai, Chaojun Xin, and Meiling Shi, Research on temperature error compensation method of vehicle-mounted laser gyro SINS, Journal of Physics Conference Series, 2021, 1885(4):042020. https://doi.org/10.1088/1742-6596/1885/4/042020

    Article  Google Scholar 

  21. Kolbas, Yu., Grushin, M.E., and Gorshkov, V.N., Nonmagnetic component of the zero bias of a Zeeman laser gyroscope, Kvantovaya elektronika, 2018, vol. 48, no. 3, pp. 283–289.

  22. Kolbas, Yu., Saveliev I.I., and Khokhlov, N.I., Influence of external and internal magnetic fields on the stability of the zero bias of a Zeeman laser gyroscope, Kvantovaya elektronika, 2015, vol. 45, no. 6, pp. 573–581.

  23. Savelyev, I. and Sinel’nikov, A., The influence of the pumping current on the Zeeman laser rotation sensors output parameters, 22nd Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2015, pp. 421–424.

  24. Sinel’nikov, A., Savel’ev, I.I., and Medvedev, A.A., Reduction of the pumping current in Zeeman laser angular rate sensors, Fizicheskoye obrazovaniye v vuzakh, 2018, vol. 24, no.1, pp. 228–230.

  25. Golyaev, Y.D., Zapotylko, N.R., Nedzvetskaya, A.A., Sinelnikov, A.O., and Tikhmenev, N.V., Laser gyros with increased time of continuous operation, 18th Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2011, p. 53.

  26. Golyaev, Yu.D., Zapotyl’ko, N.R., Nedzve-tskaya, A.A., Sinel’nikov, A.O., and Tikhmenev, N.V., Thermostable optical resonators for Zeeman laser gyroscopes, Optika i spektroskopiya, 2012, vol. 113, no. 2, pp. 253–255.

  27. Golubev, V.D., Merzlikina, N.E., Sinel’nikov, A.O., Grushin, M.E., and Sukhov, E.V., Resource tests of Zeeman laser angular rate sensors, Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2020, no. 1, pp. 78–83.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Sinel’nikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinel’nikov, A.O., Medvedev, A.A., Golyaev, Y.D. et al. Thermal Zero Drifts in Magneto-Optical Zeeman Laser Gyroscopes. Gyroscopy Navig. 12, 308–313 (2021). https://doi.org/10.1134/S2075108721040076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108721040076

Keywords

Navigation