Skip to main content
Log in

From the R-7 Missile and the First Manned Mission into Space up to Permanently Manned Orbital Station

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract—The paper presents a brief history of preparation for, and execution of, the first manned mission on Vostok spacecraft. The key tasks and challenges met to make this historical event possible are discussed. Further achievements of Russian manned space missions are presented, including the world’s first orbital station Salyut built and launched in orbit 50 years ago. The role of people in space mission is studied. The in-orbit challenges are discussed, as well as their solutions that were found by the crews and improved the spacecraft safety and performance. Examples of crew operations during the missions of the Salyut orbital stations, Mir orbital facility, and the International Space Station are given to illustrate such challenges. The importance of cosmonauts’ participation in the research and experiments on the orbital stations is demonstrated, and positive examples of such participation are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Raketno-kosmicheskaja korporatsiya “Energiya” imeni S.P. Korolyova (Korolev missile and Space Corporation Energia), Aleksandrov, A.P. et al., Eds., Korolev: RKK “Energiya”, 1996.

  2. Chertok, B.E., Rakety i lyudi (missiles and People), Moscow: Mashinostroenie, 1994. (missiles and People, Volume 1, The NASA History Series, US Gov. Printing Office, 2005).

  3. Chertok, B.E., Rakety i lyudi. Fili–Podlipki–Tyuratam (missiles and People. Fili–Podlipki–Tyuratam), Moscow: Mashinostroenie, 1996. (missiles and People, Volume 2: Creating a missile Industry, The NASA History Series, US Gov. Printing Office, 2006).

  4. Chertok, B.E., Rakety i lyudi. Goryachie dni kholodnoi voiny, Moscow: Mashinostroenie, 1997. (missiles and People. Volume 3: Hot Days of the Cold War, The NASA History Series, US Gov. Printing Office, 2009).

  5. Chertok, B.E., Rakety i lyudi. Lunnaya gonka (missiles and People. The Moon Race), Moscow: Mashinostroenie, 1999. (missiles and People. Volume 4: The Moon Race, The NASA History Series, US Gov. Printing Office, 2005).

  6. Raushenbakh, B.V. and Tokar’, E.N., Upravlenie orientatsiei kosmicheskikh apparatov (Spacecraft Attitude Control), Moscow: Nauka, 1974.

  7. Murtazin, R.F. and Blagov, V.D., Facts and myths about Gagarin’s orbit: Ballistic analysis, Novosti kosmonavtiki, 2016, no. 4, pp. 7–9.

  8. Legostaev, V.P. and Raushenbakh, B.V., Automatic assembly in space, Kosmicheskie issledovaniya, 1969, vol. 7, no. 6, pp. 803–813.

  9. Bragazin, A.F. and Ermilov, Yu.A., Optimal energetic characteristics of the parallel-guidance method when bringing satellites into proximity, Kosmicheskie issledovaniya, 1972, vol. 10, no. 5, pp. 692–699.

  10. “Salyut” na orbite (Salyut in Orbit), Bumshtein, S.I. Ed., Moscow: Mashinostroenie, 1973.

    Google Scholar 

  11. Belyaev, M.Yu., Nauchnye eksperimenty na kosmicheskikh korablyakh i orbital’nykh stantsiyakh (Scientific Experiments on Spaceships and Orbital Stations), Moscow: Mashinostroenie, 1984.

  12. Bazhinov, I.K. and Yastrebov, V.D., Navigatsiya v sovmestnom polete kosmicheskikh korablei “Soyuz” i “Apollon” (Navigation in Joint Mission of Soyuz and Apollo Spaceships), Moscow: Nauka, 1978.

  13. Belyaev, M.Yu., The main tasks and principles of designing a ground-onboard complex for controlling experiments carried out using a spacecraft, Upravlyayuschie sistemy i mashiny, 1980, no. 4. pp. 103–107.

  14. Ryumin, V.V. and Belyaev, M.Yu., Problems of control arisen during the implementation of scientific research program onboard the multipurpose orbital station, Acta Astronautica, 1987, vol. 15, pp. 739–746.

    Article  Google Scholar 

  15. Problemy i zadachi povysheniya effektivnosti programm issledovanii na kosmicheskikh korablyakh i orbital’nykh stantsiyakh (Problems and Tasks of Increasing the Efficiency of Research Programs on Spacecraft and Orbital Stations), Collection of articles, Legostaev, V.P. and Belyaev, M.Yu., Eds., Nauchno-tekhnicheskoe izdanie “Raketno-kosmicheskaya tekhnika”, Series XII, no. 1–2, Korolev: RKK “Energiya”, 2011.

  16. Bazhinov, I.K., Gavrilov, V.P., Yastrebov, V.D., et al., Navigatsionnoe obespechenie poleta orbital’nogo kompleksa “Salyut-6”–“Soyuz”–“Progress” (Navigation Support for the Mission of Salyut-6–Soyuz–Progress Orbital Complex), Moscow: Nauka, 1985.

  17. Gaushus, E.V., Zybin, Yu.N., and Legostaev, V.P., Autonomous navigation and control of Salyut-7 orbital station, Kosmicheskie issledovanija, 1986, vol. 24, no. 6, pp. 844–864.

  18. Mel’nikov, E.K., Upravlenie orbital’nym dvizheniem MKS (1998 2018 gg.) (Control of ISS Orbital Motion (1998−2018)), Ryazan’: Izd-vo RINFO, 2019.

  19. RKK “Energiya” im. S.P. Koroleva. Na rubezhe dvukh vekov (Korolev RSC Energia. At the Turn of Two Centuries), Korolev: RKK “Energiya”, 2001.

  20. Legostaev, V.P., Mikrin, E.A., Orlovskii, I.V., Borisenko, Yu.N., Platonov, V.N., and Evdokimov, S.N., Sozdanie i razvitie sistem upravleniya dvizheniem transportnykh kosmicheskikh korablei “Soyuz” i “Progress”: opyt ekspluatatsii, planiruemaya modernizatsiya (Creation and Development of Motion Control Systems of Soyuz and Progress Spacecraft: Experience of Operation and Planned Modernization), Trudy MFTI (Proceedings of MIPT), 2009, vol. 1, no. 3, pp. 4–13.

  21. Bragazin, A.F., Upravlenie sblizheniem kosmicheskikh apparatov (navigatsiya, navedenie, korrektsiya dvizheniya) (Spacecraft Rendezvous Control (Navigation, Guidance, Motion Correction), Korolev: RKK “Energiya”, 2018.

  22. Branets, V.N. and Shmyglevskii, I.P., Vvedenie v teoriyu besplatformennykh inertsial’nykh navigatsionnykh sistem (Getting Started with Theory of Strapdown Inertial Navigation Systems), Moscow: Nauka, 1992.

  23. Mikrin, E.A. and Mikhailov, M.V., Orientatsiya, vyvedenie, sblizhenie i spusk kosmicheskikh apparatov po izmereniyam ot global’nykh sputnikovykh navigatsionnykh sistem (Orientation, Ascent, Rendezvous and Descent of Spacecraft Based on Measurements from Global Navigation Satellite Systems), Moscow: MGTU im. N.E. Baumana, 2017.

  24. Belyaev, M.Yu., Rulev, D.N., Matveeva, T.V., Sazonov, V.V., Foeckersperger, S., Frank, H., and Paeffgen, W., Experience of investigations performed with the help of navigation system aboard the research Priroda module on the Mir space station, Proceedings of the 9th Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, 2002, pp. 105–110.

  25. Belyaev, M.Yu. and Tyan, T.N., Application of the gravitational stabilization mode during experiments, Kosmicheskie issledovaniya, 1984, no. 2, pp. 181–188.

  26. Chernousko, F.L., Akulenko, L.D., and Leshchenko, D.D., Evolution of Motions of a Rigid Body About Its Center of Mass, Springer International Publishing, 2017.

    Book  Google Scholar 

  27. Sarychev, V.A., Belyaev, M.Yu., Kuz’min, S.P., Sazonov, V.V., and Tyan, T.N., Investigation of attitude motion of the Salyut-7 orbital station for long time intervals, Acta Astronautica, 1987, vol. 16, pp. 165–192.

    Article  Google Scholar 

  28. Belyaev, M.Yu., Zykov, S.G., Manzhelei, A.I., Rulev, D.N., Stazhkov, V.M., and Teslenko, V.P., Mathematical support of automated research planning on the Mir orbital complex, Kosmicheskie issledovanija, 1988, vol. 27, no. 1, pp. 126–134.

  29. Belyaev, M.Yu., Desinov, L.V., Karavaev, D.Yu., Sarmin, E.E., and Yurina, O.A., Hardware and software for studying the Earth’s surface from the Russian segment of the International Space Station under the Uragan program, Kosmonavtika i raketostroenie, 2015, no. 1, pp. 63–70.

  30. Belyaev, M.Yu., Cheremisin, M.V., and Esakov A.M., Integrated monitoring of the earth surface from onboard ISS Russian segment, Proceedings of the International Astronautical Congress, IAC 2018, pp. 5502–5511.

  31. Belyaev, M.Yu., Weppler, J., Wikelski, M., Volkov, O.N., Müller, U., Pitz, W., Solomina, O.N., and Tertitskii, G.M., Test of control technology of the animal movement on the Earth using the scientific equipment installed on the ISS RS, Proceedings of the 27th Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, 2020.

  32. Artem'ev, O.G., Prokop’ev, S.V., Belyaev, M.Yu., Ayukaeva, D.M., Volkov, O.N., Dolganov, E.V., Kireevichev, S.S., Knyazev, A.I., and Korneev, A.P., Technology of mounting the large-size equipment on the outer surface of the ISS RS as exemplified by the ICARUS equipment, Pilotiruemye polety v kosmos, 2019, vol. 31, no. 2, pp. 34–43.

  33. Belyaev, M.Yu., Scientific equipment and Earth studies techniques in space experiment Uragan on board the International Space Station, Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2021, vol. 18, no. 3, pp. 92–107.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Belyaev.

Additional information

The paper is based on the invited paper presented at the 28th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS-2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, M.Y. From the R-7 Missile and the First Manned Mission into Space up to Permanently Manned Orbital Station. Gyroscopy Navig. 12, 265–280 (2021). https://doi.org/10.1134/S2075108721030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108721030032

Keywords:

Navigation