Skip to main content
Log in

A Study on the Effect Produced by Instrumental Error of Automated Astronomical System on Landmark Azimuth Accuracy

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper analyzes how random and systematic components of instrumental error of an automated astronomical system affect the accuracy of the landmark astronomical azimuth. The obtained results can be applied to construct the error mathematical model and to define the mutual orientation of the body axes when designing the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Rukovodstvo po astronomicheskim opredeleniyam (A Guide on Astronomical Determinations), Moscow: Nedra, 1984.

  2. Rukovodstvo po astronomo-geodezicheskim rabotam pri topogeodezicheskom obespechenii voisk. Part 3. Giroskopicheskoe orientirovanie (A Guide on Astronomical-Geodetic Surveys in Topographic-Geodetic Provision of Military Forces. Part 3. Gyroscopic Orientation), Moscow: RIO VTS, 1982.

  3. Glazunov, A.S., Modern tendencies in geodetic astronomy, Interexpo Geo-Siberia, Novosibirsk: SGGA, 2008, pp. 183–188.

    Google Scholar 

  4. Bezdíček, V., Dandoš, R., Konečný, M., Kotrbanec, J., Král, T., and Wlochová, A., Orientation measurement with gyrotheodolite, Geodesy and Cartography, 2018, vol. 44, p. 100–105.

    Article  Google Scholar 

  5. Bezdíček, V., Dandoš, R., and Wlochová, A., Accuracy of determination of azimuth with a gyro-theodolite by the follow-up measurement, Arabian Journal of Geosciences, 2020, vol. 13.

  6. Chernov, I.V., A procedure for determining the gyrotheodolite instrumental error with a preset accuracy, Trudy voenno-kosmicheskoi akademii im. A.F. Mozhaiskogo (Proceedings of the Mozhaiskiy Military Space Academy), St. Petersburg: Mozhaiskiy Military Space Academy, 2019, No. 671, pp. 192–200.

  7. Chernov, I.V., Determining the orientation accuracies achieved by gyrotheodolite systems, Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli (High Technologies in Space Surveys of the Earth), 2016, vol. 8, no. 6, pp. 12–16.

  8. Gayvoronskii, S.V., Kuz’mina, N.V., and Tsodokova, V.V., A high-precision optoelectronic system for determining the astronomical azimuth: Development results, Materialy dokladov 28 konferentsii pamyati N.N. Ostryakova (Proceedings of the 28th Conference in Memory of N.N. Ostryakov), St. Petersburg: Concern CSRI Elektropribor, JSC, 2012.

  9. Gayvoronskii, S.V., Berkovich, S.B., Kotov, N.I., Makhaev, A.Yu., Sadekov, R.N., and Tsodokova, V.V., An automatic system for determining astronomical azimuth, Measurement Techniques, 2015, vol. 58, no. 3, pp. 280–285.

    Article  Google Scholar 

  10. Gienko, E.G., Astrometriya i geodezicheskaya astronomiya (Astrometry and Geodetic Astronomy), Novosibirsk: SGGA, 2011.

  11. Hauk, M., Hirt, C., and Ackermann, C., Experiences with the QDaedalus system for astrogeodetic determination of deflections of the vertical, Survey Review, 2016, vol.49, pp. 294–301.

    Article  Google Scholar 

  12. Baladimos, D.D., Korakitis, R., Lambrou, E., and Pantazis, G., Fast and accurate determination of astronomical coordinates Φ, Λ and azimuth using a total station and GPS receiver, Survey Review, 2003, vol. 37, pp. 269–275.

    Article  Google Scholar 

  13. Lambrou, E. and Pantazis, G., Astronomical azimuth determination by the hour angle of Polaris using ordinary total stations, Survey Review, vol. 40, 2008, p. 164−172.

    Article  Google Scholar 

  14. Chernov, I.V., The model of integrated satellite-gyroscopic system for fast determination of astronomical azimuth, Geodeziya i kartografiya (Geodesy and Cartography), 2017, vol. 78, no. 7, pp. 2–8.

    Article  Google Scholar 

  15. Sholokhov, A.V., Berkovich, S.B., Kotov, N.I., and Makhaev, A.Yu., Determining the achievable azimuth determination accuracy with a short baseline using satellite and geodetic aids, Geodeziya i kartografiya (Geodesy and Cartography), 2018, vol. 79, no. 6, pp. 2–8.

    Article  Google Scholar 

  16. Chang, C.C. and Tsai, W.Y., Evaluation of a GPS-based approach for rapid and precise determination of geodetic/astronomical azimuth, Journal of Surveying Engineering, 2016.

  17. Tsodokova, V. V., Gaivoronskii, S.V., Tarasov, S.M., and Rusin, E.V., Determination of astronomical coordinates with an automated zenith telescope, 16 Konferentsiya molodykh uchenykh “Navigatsiya i upravlenie dvizheniem” (Proceedings of the 16th Conference of Young Scientists “Navigation and Motion Control”), St. Petersburg: Concern CSRI Elektropribor, JSC, 2014, pp. 269–276.

  18. Modern Technologies and Methods for Measuring the Earth’s Gravity Field Parameters, Peshekhonov, V.G., Stepanov, O.A., Eds., St. Petersburg: Concern CSRI Elektropribor, JSC, in press.

  19. Brumberg, V.A., Glebova, N.I., Lukashova, M.V., Malkov, A.A., Pit’eva, E.V., Rumyantseva, L.I., Sveshnikov, M.L., and Fursenko, M.A., Trudy IPA RAN. Vypusk 10. (Proceedings of IAA RAS. No. 10. Detailed Explanation of the Astronomical Yearbook), St. Petersburg: IAA RAS, 2004.

  20. Kovalevskii, Zh., Sovremennaya astrometriya (Modern Astrometry), Fryazino: Vek 2, 2004.

  21. Gaivoronskii, S.V., Rusin, E.V., and Tsodokova, V.V., Comparative analysis of algorithms for star identification in an image, 16 Konferentsiya molodykh uchenykh “Navigatsiya i upravlenie dvizheniem” (Proceedings of the 16th Conference of Young Scientists “Navigation and Motion Control”), St. Petersburg: Concern CSRI Elektropribor, JSC, 2014, pp. 284–290.

  22. Tsodokova, V.V. and Motorin, A.V., Calculation of accuracy characteristic in estimation of parameters of the star coordinates transformation, Izvestiya Tul’skogo gosudarstvennogo universiteta (Proceedings of Tula State University), 2016, pp. 129–141.

  23. Tsodokova, V.V. and Motorin, A.V., Analysis of accuracy of determining the parameters of the star coordinates transformation, 18 Konferentsiya molodykh uchenykh “Navigatsiya i upravlenie dvizheniem” (Proceedings of the 18th Conference of Young Scientists “Navigation and Motion Control”), St. Petersburg: Concern CSRI Elektropribor, JSC, 2016, pp. 416–424.

  24. Blazhko, S.N. Kurs prakticheskoi astronomii (A Course of Practical Astronomy), Moscow: Nauka, 1979, pp. 393–408.

  25. Matveev, V.V. and Raspopov, V.Ya., Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh sistem (Fundamentals of Designing Strapdown Inertial Navigation Systems), Raspopov, V.Ya., Ed., Concern CSRI Elektropribor, JSC, St. Petersburg, 2009.

Download references

ACKNOWLEDGMENTS

The author is grateful to N.V. Kuz’mina and V.V. Tsodokova for helpful remarks on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Tarasov.

Additional information

The paper is based on presentation made at the 13th Multiconference on control Problems, Saint Petersburg, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, S.M. A Study on the Effect Produced by Instrumental Error of Automated Astronomical System on Landmark Azimuth Accuracy. Gyroscopy Navig. 12, 178–185 (2021). https://doi.org/10.1134/S2075108721020085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108721020085

Keywords:

Navigation