Skip to main content
Log in

Promising Map-Aided Aircraft Navigation Systems

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper analyzes the development prospects for aircraft navigation systems using onboard geophysical field measurements. Prospective systems that are not widely applied yet are considered: magnetic gradiometers measuring the stationary magnetic field gradient, gravity gradiometers measuring the gravity field gradient, and electromagnetic systems measuring the alternating part of magnetic field. We discuss the main problems to be solved during airborne measurements of these parameters and give an overview of algorithms and hardware solutions. We analyse the results of onboard measurements and estimate the possible navigation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gaspar, J., Ferreira, R., Sebastião, P., Souto, N., Capture of UAVs through GPS spoofing, Proceedings of the 6th Global Wireless Summit 2018 (GWS-2018), 2018, pp. 21–26.

  2. Emeliantsev, G.I. and Stepanov, A.P., Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated INS/GNSS Orientation and Navigation Systems), St. Petersburg, Concern CSRI Elektropribor, JSC, 2016.

  3. Groves, P.D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Boston and London: Artech House, 2013, second edition.

    MATH  Google Scholar 

  4. Al Bitar, N., Gavrilov, A.I., and Khalaf, W., Artificial intelligence based methods for accuracy improvement of integrated navigation systems during GNSS signal outages: An analytical review, Gyroscopy and Navigation, 2020, no. 1, pp. 41–58.

  5. Al Bitar, N. and Gavrilov, A.I., Comparative analysis of fusion algorithms in a loosely-coupled integrated navigation system on the basis of real data processing, Gyroscopy and Navigation, 2019, no. 4, pp. 231–244.

  6. Khalaf, W. Chouaib, I., and Wainakh, M., Novel adaptive UKF for tightly-coupled INS/GPS integration with experimental validation on an UAV, Gyroscopy and Navigation, 2017, no. 4, pp. 259–269.

  7. Dzhandzhgava, G. I. and Avgustov, L.I., Navigatsiya po geopolyam. Nauchno-metodicheskie materialy (Navigation with the Aid of Geofields. Scientific and methodology data), Moscow: Nauchtechlit, 2018.

  8. Beloglazov, I.N., Dzhandzhgava, G.I., and Chigin, G.P., Osnovy navigatsii po geofizicheskim polyam (Basics of the Geophysical Fields Navigation), Moscow: Nauka, 1985.

  9. Krasovsky, A.A., Beloglazov, I.N., and Chigin, G.P., Teoriya korrelyatsionno-ekstremal’nykh system navigatsii (Theory of Correlation Extreme Navigation Systems), Moscow: Nauka, 1979.

  10. Bergman, N., Recursive Bayesian Estimation: Navigation and Tracking Applications, Sweden: Linkoping University, 1999.

    Google Scholar 

  11. Vaman, D., TRN history, trends and the unused potential, 31st Digital Avionics Systems Conference (DASC), IEEE, 2012, pp. 1A3-1–1A3-16.

  12. Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of Nonlinear Filtering Theory for Processing Navigation Information), St. Petersburg: CSRI Elektropribor, 2003.

  13. Karshakov, E.V. Tkhorenko, M.Yu., and Pavlov, B.V., Aeromagnetic gradiometry and its application to navigation, Automation and Remote Control, 2018, vol. 79, no. 5, pp. 897–910.

    Article  Google Scholar 

  14. Sazonova, T.V. and Shelagurova, M.S., Geoinformatsiya v kompleksakh bortovogo oborudovaniya letatel’nykh apparatov (Geoinformation for the onboard instrumentation systems of the aircrafts), Moscow: Nauchtechlit, 2018.

  15. Canciani, A. and Raquet, J., Airborne magnetic anomaly navigation, IEEE Transactions on Aerospace and Electronic Systems, 2017, vol. 53, issue 1, pp. 67–80.

    Article  Google Scholar 

  16. Vyazmin, V.S., Golovan, A.A., Papusha, I. A., and Popelensky, M. Yu., Informativeness of vector magnetometer measurements and global geomagnetic field models in the aircraft INS aiding, The 23rd St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2016, pp. 397–401.

  17. Babayants, P.S., Airborne geophysical technologies are the efficient means for optimizing geological exploration, Razvedka i okhrana nedr, 2015, no. 12, pp. 25–33.

  18. Babayants, P.S., Kertsman, V. M., Levin, F.D., and Trusov, A.A., Special features of the state-of-the-art airborne gamma spectrometry, Razvedka i okhrana ned-r, 2015, no. 12, pp. 10–16.

  19. Fairhead, J.D., Cooper, G.R.J., and Sander, S., Advances in airborne gravity and magnetics, Proceedings of Exploration 17: 6th Decennial International Conference on Mineral Exploration, Tschirhart, V. and Thomas, M.D., Eds, 2017, pp. 113–127.

  20. Minligareev, V.T., Sazonova, T.V., Kravchenok, V.L., Tregubov, V.V., and Hotenko, E.N., Geophysical support of the magnetometry autonomous navigation systems, The 27 th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Concern CSRI Elektropribor, JSC, 2020.

  21. Stolz, R., Zakosarenko, V., Schulz, M., Chwala, A., Fritzsch, L., Meyer, H.G., and Köstlin, E.O., Magnetic full-tensor SQUID gradiometer system for geophysical applications, Leading Edge, 2006, 25, pp. 178–180.

    Article  Google Scholar 

  22. Stasinowsky, W., Tensor and vector magnetic advances: The latest software and hardware and what it means for exploration, Geophysics: New proven advances and applications in exploration geophysics, Prospectors and Developers Association of Canada Convention, 2020.

  23. Karin, T., Dunham, S., and Fu, S., Alignment of the diamond nitrogen vacancy center by strain engineering, Applied Physics Letters, 2014, May, pp. 1–4.

  24. Sui, Y., Miao, H., Wang, Y., Luan, H., and Lin, J., Correction of a towed airborne fluxgate magnetic tensor gradiometer, IEEE Geoscience and Remote Sensing Letters, 2016, vol. 13, no. 12, pp. 1837–1841.

    Article  Google Scholar 

  25. Sui, Y., Li, G., Wang, S., and Lin, J., Compact fluxgate magnetic full-tensor gradiometer with spherical feedback coil, Review of Scientific Instruments, 2014, 85, 014701, pp. 1–7.

    Article  Google Scholar 

  26. Peshehonov, V.G., Stepanov, O.A. et al., Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya Zemli (Modern Technologies and Methods for Measuring the Parameters of the Earth Gravity Field). St. Petersburg: Concern CSRI, Elektropribor, JSC, 2017.

  27. Sokolov, A.V., Krasnov, A.A., Alekseenko, A.S. et al., Measuring absolute gravity aboard moving vehicles, Gyroscopy and Navigation, 2017, no. 4., pp. 287–294.

  28. Peshekhonov, V.G., Sokolov, A.V., Zheleznyak, L.K. et al., Role of navigation technologies in mobile gravimeters development, Gyroscopy and Navigation, 2020, no. 1, pp. 2–12.

  29. Hofmeyer, G.M. and Affleck, C.A., Rotating accelerometer gradiometer: US Patent 5,357,802, 1994.

  30. Evstifeev, M.I., The state of the art in the development of onboard gravity gradiometers, Gyroscopy and Navigation, 2017, no. 1, pp. 68–79.

  31. Evstifeev, M.I., Dynamics of onboard gravity gradiometers, Gyroscopy and Navigation, 2020, no. 1, pp. 13–24, 2020.

    Article  Google Scholar 

  32. Sosedko, D.N., A review of the modern development of ground and space based gravity gradiometers, Materialy III Nauchno-prakticheskoi konferentsii “Metrologiya v 21 veke” (Proceedings of the Third Scientific and Practical Conference “Metrology in the 21st century), VNIIFTRI, 2015, pp. 179–190.

  33. Legault, J.M., Airborne electromagnetic systems – state of the art and future directions, CSEG Recorder, 2015, June, pp. 38–49.

  34. Trigubovich, G.M., Shevchuk, S.O., Kosarev, N.S. et al., Complex technology of navigation and geodetic support of airborne electromagnetic surveys, Gyroscopy and Navigation, 2017, no. 3, pp. 226–234.

  35. Spies, B.R. and Frischknecht, F.C., Electromagnetic sounding, Electromagnetic Methods in Applied Geophysics, vol. 2: Applications, Nabighian, M.N., Ed., 2008, pp. 285–425.

  36. Bagrianski, A., Kuzmin, P., and Prikhodko, A., AFMAG evolution – expanding limits, Extended abstracts of 16th SAGA Biennial Conference and Exhibition, 2019, pp. 1–4.

  37. Chwala, A., Kingman, J., Stolz, R., Schmelz, M., Zakosarenko, V., Linzen, S., Bauer, F., Starkloff, M., Meyer, M., and Meyer, H.-G., Noise characterization of highly sensitive SQUID magnetometer systems in unshielded environments, Superconductor Science and Technology, 2013, no. 26, pp. 1–5.

  38. Felix, Zh.T., Karshakov, E.V., Mel’nikov, P.V., and Vanchugov, V.A., Comparison results for airborne and ground based electromagnetic systems used for kimberlite exploration in the Republic of Angola, Geofizika, no. 4, 2014, pp. 17–22.

  39. Mogilevskiy, V.E., Brovkin, G.I., and Kontarovich, O.R., Achievements, features and problems of aerogravity measurements, Razvedka i okhrana nedr, 2015, no. 12, pp. 16–25.

  40. Vovenko, T.A., Volkovitsky, A.K., Pavlov, B.V., Karshakov, E.V., and Tkhorenko, M. Yu., The models and structure of onboard measurements of three-dimensional physical fields, Automation and Remote Control, 2017, vol. 78, no. 6, pp. 1115–1127.

    Article  MathSciNet  Google Scholar 

  41. International geomagnetic reference field, https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html.

  42. Barnes, D., Factor, J.K., Holmes, S.A., Ingalls, S., Presicci, M.R., Beale, J., and Fecher, T., Earth gravitational model 2020, American Geophysical Union, Fall meeting 2015, abstract id. G34A-03.

  43. Parcell, E. and Morin, D.J., Electricity and Magnetism, Cambridge University Press, 2019.

    Google Scholar 

  44. Bolotin, Yu.V. and Vyazmin, V.S., Gravity anomaly estimation by airborne gravimetry data using LSE and minimax optimization and spherical wavelet expansion, Gyroscopy and Navigation, 2015, no. 4, pp. 310–317.

  45. Karshakov, E., Iterated extended Kalman filter for airborne electromagnetic data inversion, Exploration Geophysics, 2020, vol. 51, no. 1, pp. 66–73.

    Article  Google Scholar 

  46. Leliak, P., Identification and evaluation of magnetic-field sources of magnetic airborne detector equipped aircraft, IRE Transactions on Aerospace and Navigatio-nal Electronics, 1961, vol. ANE-8, no. 3, pp. 95–105.

    Article  Google Scholar 

  47. Pavlov, B.V., Karshakov, E.V., and Tkhorenko, M. Yu., On calibration of a navigation system equipped with a magnetic gradiometer, Proceedings of the 24 th St. Petersburg International Conference on Integrated Navigation Systems in the IEEE Xplore Digital Library, 2017, pp. 1–3.

  48. Volkovitsky, A.K., Goldin, D.A., Karshakov, E.V., and Pavlov, B.V., Printsipy postroeniya, struktura i algoritmy aeroelektrorazvedochnykh kompleksov. Chast’ 1. Sostoyanie, problem i teoreticheskie osnovy (Design Principles, Structure and Algorithms of the Airborne Electromagnetic Systems. Part 1. State of the Art, Problems and Theoretical Basis), Moscow, V.A. Trapeznikov Institute of Control Sciences, 2013.

  49. Huang, Y., Wu, L., and Li, D., Theoretical research on full attitude determination using geomagnetic gradient tensor, Journal of Navigation, 2015, 68, pp. 951–961.

    Article  Google Scholar 

  50. Getscher, T. and Frontera, P., Magnetic gradient tensor framework for attitude-free position estimation, International Technical Meeting of the Institute of Navigation, 2019, pp. 495–507.

  51. Affleck, C.A. and Jircitano, A., Passive gravity gradiometer navigation system, Proceedings of the IEEE Position Location and Navigation Symposium, 1990, pp. 60–66.

  52. Gleason, D.M., Passive airborne navigation and terrain avoidance using gravity gradiometry, Journal of Guidance, Control and Dynamics, 1995, vol. 18, no. 6, pp. 1450–1458.

    Article  Google Scholar 

  53. Xiong, L., Xiao, L.W., Dan, B.B., and Ma, J., Full tensor gravity gradient aided navigation based on nearest matching neural network, Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, IEEE, 2013, pp. 462–465.

  54. Welker, T.C., Pachter, M., and Huffman Jr., R.E., Gravity gradiometer integrated inertial navigation, European Control Conference, Switzerland, 2013, pp. 846–851.

  55. Volkovitsky, A. K., Karshakov, E. V., and Pavlov, B.V., Rocks effective resistivity distribution as a navigation reference for the map matching navigation systems, Izvestia YuFU. Technical Sciences, 2012, no. 3, pp. 113–119.

  56. Stepanov, O.A. and Toropov, A.B., Nonlinear filtering for map aided navigation. Part 2. Trends in the algorithm development, Gyroscopy and Navigation, 2016, no. 1, pp. 82–89.

  57. Stepanov, O.A., Nosov, A.S., and Toropov, A.B., On classification of the algorithms for geophysical fields navigation, The 27 th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Concern CSRI Elektropribor, JSC, 2020.

  58. Stepanov, O.A. and Nosov, A.S., A map-aided navigation algorithm without preprocessing of field measurements, Gyroscopy and Navigation, 2020, no. 2, pp. 162–175.

  59. Tkhorenko, M.Yu., Karshakov, E.V., Pavlov, B.V., and Volkovitsky, A.K., On integration of a strapdown inertial navigation system with modern magnetic sensors, The 25th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Concern CSRI Elektropribor, JSC, 2018, pp. 1–4.

  60. Tkhorenko, M.Yu., Karshakov, E.V., and Pavlov, B.V., Geophysical data processing methods to provide the operation of navigation system with the aid of the Earth magnetic field gradient, XIII Vserossiiskoe soveshchanie po problemam upravleniya (The 13th All-Russian Meeting on Control Problems), 2019, pp. 3012–3018.

  61. Stepanov, O.A. and Toropov, A.B., Nonlinear filtering for map-aided navigation. Part 1. An overview of algorithms, Gyroscopy and Navigation, 2015, no. 4, pp. 324–337.

  62. HeliFALCON airborne gravity gradiometer and magnetic stinger survey, Geophysical survey report, Sullivan North, Missouri, Project 14012 USGS, by CGG, May 30, 2014.

  63. Bobrov, D.S., Investigation of the algorithms to prepare gravity navigation reference maps using digital elevation maps, Trudy IV Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Navigatsiya, navedenie i upravlenie letatel’nymi apparatami (Proceedings of the IV All-Russian Scientific Technical Conference “Aircraft Navigation, Guidance and Control”, Moscow, GosNIIAS, 2019, pp. 206–207.

  64. Ley-Cooper, A.Y., Brodie, R.C., and Richardson, M., AusAEM: Australia’s airborne electromagnetic continental-scale acquisition program, Exploration Geophysics, 2020, vol. 51, no. 1, pp. 193–202.

    Article  Google Scholar 

  65. Hǿyer, A.-S., Jǿrgensen, F., Viezzoli, A., Menghini, A., and Pedersen, S.A.S., Geological interpretation of structural geology and buried valleys at the foothills of the Rocky Mountains, British Columbia – based on SkyTEM data, AEM 2018 conference, Denmark, 2018, pp. 1–4.

  66. Reninger, P.-A., Martelet, G., Perrin, J., and Dumont, M., Processing methodology for regional AEM surveys and local implications, Exploration Geophysics, 2020, vol. 51, no. 1, pp. 143–154.

    Article  Google Scholar 

  67. Moilanen, E.V., Garakoev, A.M., and Karshakov, E.V., Airborne geophysical survey of the Republic of Rwanda (26,000 km2) using the Equator system, Materialy 10 mezhdunarodnoi konferentsii “Upravlenie razvitiem krupnomashtabnykh sistem” (Proceedings of the 10th International Conference “Management of Large-Scale System Development”), vol. 2, 2017, Moscow, pp. 154–157.

  68. Melnikov, P.V. and Karshakov, E.V., The results of experimental aeromagnetic survey of horizontal gradients of the magnetic field using an An-3, Trudy 14-i nauchno-prakticheskoi konferentsii “Inzhenernaya i rudnaya geofizika” (Proceedings of the 14th Scientific and Practical Conference “Engineering and Mining Geophysics”), 2018, pp. 1–6.

  69. Torge, W., Gravimetry, De Gruyter, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Karshakov.

Additional information

The article is based on the paper presented at the 27th Saint Petersburg International Conference on Integrated Navigation Systems, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karshakov, E.V., Pavlov, B.V., Tkhorenko, M.Y. et al. Promising Map-Aided Aircraft Navigation Systems. Gyroscopy Navig. 12, 38–49 (2021). https://doi.org/10.1134/S2075108721010077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108721010077

Keywords:

Navigation