Skip to main content
Log in

Safe Navigation Algorithm for Autonomous Underwater Vehicles

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

Two safe navigation algorithms for autonomous underwater vehicles are described: algorithm for avoidance of point obstacles including all the moving underwater and surface objects, and limited size bottom objects, and algorithm for bypassing extended obstacles such as bottom elevations, rough lower ice edge, garbage patches. These algorithms are developed for a control system of a heavyweight autonomous underwater vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Inzartsev, A.V., Kiselev, L.V., Kostenko, V.V., Matvienko, Yu.V., Pavin, A.M., and Shcherbatyuk, A.F., Podvodnye robototekhnicheskie kompleksy: sistemy, tekhnologii, primenenie (Underwater Robotic Systems: Systems, Technology, Application), Vladivostok: Dal’nauka, 2018.

  2. Naumov, L.A., Illarionov, G.Yu., Laptev, K.Z., and Babak, A.V., On the principles of planning and specific features of generating the global routes of autonomous underwater robots, Izvestiya TulGU. Tekhnicheskie nauki, no. 11, part 2, Tula: TulGU, 2015.

    Google Scholar 

  3. Laptev, K.Z. and Illarionov, G.Yu., What can obstruct the underwater navigation of autonomous underwater vehicle, Sbornik materialov XII Vserossiiskoi nauchno-prakticheskoi konferentsii “Perspektivnye sistemy i zadachi upravleniya” (Proceedings of the 12th All-Russian Research and Practical Conference “Perspective Control Systems and Problems”), Rostov-on-Don, South Federal University, 2017, pp. 138–146.

  4. Inzartsev, A.V. and Bagnitskii, A.V., Planning and following the trajectories of autonomous underwater robots during monitoring in various water areas, Podvodnye Issledovaniya i Robototekhnika, 2016, no. 2 (22), pp. 25–35.

  5. Bagnitskii, A.V. and Inzartsev, A.V., Automation of mission preparation for an autonomous underwater vehicle in water area exploration, Podvodnye Issledovaniya i Robototekhnika, 2010, no. 2(10), pp. 17–24.

  6. Pashkevich, I.V., Grinenkov, A.V., Konyukhov, G.V. et al., Features of AUV emergency subsystem with application of multiagent technology in its control system, Trudy Vserossiiskoi konferentsii “Prikladnye tekhnologii gidroakustiki i gidrofiziki” (Proceedings of All-Russian Conference “Applied Technologies in Hydroacoustics and Hydrophysics”), St. Petersburg, September 21−24, 2020, pp. 276–285.

  7. Inzartsev, A.V. and Bagnitskii, A.V., Local bottom object avoidance algorithms for autonomous underwater robot, 6 Vserossiiskaya nauchno-prakticheskaya konferentsiya “Tekhnicheskie problemy osvoeniya mirovogo okeana” (TPOMO-6) (The 6th All-Russian Research and Practical Conference “Technical Problems in World Ocean Exploration”), Vladivostok, 2015, pp. 450–454.

  8. Tuseeva, I.B., Tuseeva, D.B., and Kim Yun-Gi, Dynamic window algorithm for the navigation of autonomous underwater vehicles, Iskusstvennyi Intellekt i Prinyatie Reshenii, 2013, no. 3, pp. 67–77.

  9. Galarza, C., Masmitja, I., Prat, J., and Gomariz, S., Design of obstacle detection and avoidance system for Guanay II AUV, Appl. Sci., 2020, vol. 10, pp. 32–37.

    Google Scholar 

  10. Lin, C., Wang, H., Yuan, J., Yu, D., and Li, C., An improved recurrent neural network for unmanned underwater vehicle online obstacle avoidance, IEEE J.Ocean. Eng., 2019, vol. 44, pp. 120–133.

    Google Scholar 

  11. Fox, D., Burgardt, W., and Thrun, S., The dynamic window approach to collision avoidance, IEEE Robotics and Automation Magazine, 1995.

  12. Sami, A., Ayman, M.M., and Brisha, M., Analysis and simulation of 3D trajectory with obstacle avoidance of an autonomous underwater vehicle for optimum performance, International Journal of Computer Science and Network Security, 2012, vol. 12, no. 3, pp. 43–50.

    Google Scholar 

  13. Galarza, C., Masmitja, I., González, J., Prat, J., Gomariz, S., Del Rio, J., Design of obstacle detection system for AUV Guanay II.A, Sixth International Workshop on Marine Technology, Cartagena, 2015, pp. 15–18.

  14. Hromatka, M., A Fuzzy Logic Approach to Collision Avoidance in Smart UAVs, Honors Theses, 2013, Paper 13. URL: http://digitalcommons.csbsju.edu/ honors_theses/13.

  15. Evans, J., Patrón, P., Smith, B., and Lane, D.M., Design and evaluation of a reactive and deliberative collision avoidance and escape architecture for autonomous robots, Autonomous Robots, 2008, vol. 24, no 3, pp. 247–266.

    Article  Google Scholar 

  16. Chiew, S.T., A collision avoidance system for autonomous underwater vehicles, Honors Theses, University of Plymouth, 2006. URL: http://hdl.handle.net/10026.1/2258.

  17. Liu, S., Wei, Y., and Gao, Y., 3D path planning for AUV using fuzzy logic, Computer Science and Information Processing (CSIP), 2012, URL: http://ieeexplore .ieee.org/stamp/stamp.jsp?tp=&arnumber=6308925.

  18. Jane’s unmanned maritime vehicle, 2019–2020, Kelvin Wong, Ed., IHS Markit, 2020.

    Google Scholar 

  19. Apollonov, E.M., Bachurin, A.A., Gorokhov, A.I., and Ponomarev, L.O., On the possibility and necessity of creating a superlarge autonomous underwater vehicle, Sbornik materialov XIII Vserossiiskoi nauchno-prakticheskoi konferentsii “Perspektivnye sistemy i zadachi upravleniya” (Proceedings of the 13th All-Russian Research and Practical Conference “Perspective Control Systems and Problems”), Rostov-on-Don–Taganrog, South Federal University, 2018, pp. 34–42.

  20. Akustika okeana (Ocean Acoustics), Brekhovskikh, L.M., Ed., Moscow: Nauka, 1974.

    Google Scholar 

  21. Spravochnik shturmana (The Navigator’s Guide), Shandabylov, V.D., Ed., Moscow: Voenizdat, 1968.

    Google Scholar 

  22. Zakharov, V.L. and Mashoshin, A.I., Methods to validate the accuracy requirements for determining the target coordinates and motion parameters by submarine sonar system data, Morskaya Radioelektronika, 2011, no. 4 (38), pp. 36–39.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Mashoshin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykova, V.S., Mashoshin, A.I. & Pashkevich, I.V. Safe Navigation Algorithm for Autonomous Underwater Vehicles. Gyroscopy Navig. 12, 86–95 (2021). https://doi.org/10.1134/S2075108721010028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108721010028

Keywords:

Navigation