Skip to main content
Log in

Modeling of the Dimensional Dependence of NMR Isotope Shift in Xenon

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

Reduction of optical quantum sensors in size, including nuclear magnetic resonance (NMR) gyroscopes, implies primarily downsizing of the working gas cell. This paper considers the dependence of isotope shift in the balanced scheme based on NMR in xenon isotopes on the dimensions of the gas cell. With this aim in view, an experimental and theoretical studies of the factors affecting the relaxation rate of xenon isotopes have been carried out. The proposed numerical model allows predicting the magnitude of the isotope shift for cells of various sizes with variations in their basic parameters, namely, temperature and pressure of the gas mixture. Based on the results of the numerical simulation, recommendations are given for optimizing the basic parameters of the gas cell by changing its dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Virgincar, R.S., Cleveland, Z.I., Sivaram, K.S., Freeman, M.S., Nouls, J., Cofer, G.P., Martinez-Jimenez, S., He, M., Kraft, M., Wolber, J., Page McAdams, H., and Driehuys, B., Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease, NMR in Biomedicine, 2013, vol. 26, no. 4, pp. 424–435.

    Article  Google Scholar 

  2. Chang, Y.V., Quirk, J.D., Ruset, L.C., Atkinson, J.J., Hersman, F.W., and Woods, J.C., Quantification of human lung structure and physiology using hyperpolarized 129 Xe: Xenon MR of human lung, Magnetic Resonance in Medicine, 2014, vol. 71, no. 1, pp. 339–344.

    Article  Google Scholar 

  3. Kanegsberg, E., A nuclear magnetic resonance (NMR) gyro with optical magnetometer detection, SPIE, San Diego, United States, 1978, vol. 0157, pp. 73–80.

    Google Scholar 

  4. Walker, T. and Larsen, M., Spin-exchange pumped NMR gyros, Adv. At. Mol. Opt. Phys., 2016, vol. 65, pp. 373–401.

    Article  Google Scholar 

  5. Vershovskii, A.K., Litmanovich, Yu.A., Pazgalev, A.S., and Peshekhonov V.G., Nuclear magnetic resonance gyro: Ultimate parameters, Gyroscopy and Navigation, 2018, vol. 9, no. 3, pp. 162–176.

    Article  Google Scholar 

  6. Popov, E.N., Barantsev, K.A., Ushakov, N.A., Litvinov, A.N., Liokumovich, L.B., Shevchenko, A.N., Sklyarov, F.V., and Medvedev, A.V., Behavior of signal from optical circuit of quantum rotation sensor based on nuclear magnetic resonance, Gyroscopy and Navigation, 2018, vol. 9, no. 3, pp. 183–190.

    Article  Google Scholar 

  7. Gemmel, C., Heil, W., Karpuk, S., Lenz, K., Ludwig, Ch., Sobolev, Yu., Tullney, K., Burghoff, M., Kilian, W., Knappe-Grüneberg, S., Müller, W., Schnabel, A., Seifert, F., Trahms, L., and Baeßler, St., Ultra-sensitive magnetometry based on free precession of nuclear spins, The European Physical Journal D, 2010, vol. 57, no. 3, pp. 303–320.

    Article  Google Scholar 

  8. Bulatowicz, M., Griffith, R., Larsen, M., Mirija-nian, J., Fu, C.B., Smith, E., Snow, W.M., Yan, H., and Walker, T.G., Laboratory search for a long-range T-odd, P-odd interaction from axion-like particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas, Physical Review Letters, 2013, vol. 111, no. 10, p. 102001.

    Article  Google Scholar 

  9. Allmendinger, F., Heil, W., Karpuk, S., Kilian, W., Scharth, A., Schmidt, U., Schnabel, A., Sobolev, Yu., and Tullney, K., New limit on Lorentz-invariance- and CPT-violating neutron spin interactions using a free-spin-precession 3He–129Xe comagnetometer, Phys. Rev. Lett., 2014, vol. 112, no. 11, p. 110801.

    Article  Google Scholar 

  10. Grossetête, F., Relaxation par collisions d’échange de spin, Journal de Physique, 1964, vol. 25, no. 4, pp. 383–396.

    Article  Google Scholar 

  11. Herman, R.M., Theory of Spin Exchange between Optically Pumped Rubidium and Foreign Gas Nuclei, Physical Review, 1965, vol. 137, no. 4A, pp. A1062–A1065.

    Article  Google Scholar 

  12. Walker, T.G., Korver, A., Thrasher, D., and Bulatowicz, M., Synchronously pumped NMR gyro, IEEE, 2015, pp. 1–4.

    Book  Google Scholar 

  13. Thrasher, D.A., Sorensen, S.S., Weber, J., Bulato-wicz, M., Korver, A., Larsen, M., and Walker, T.G., Continuous comagnetometry using transversely polarized Xe isotopes, Physical Review A, 2019, vol. 100, no. 6.

  14. Vershovskii, A.K., Pazgalev, A.S., and Petrov, V.I., The nature of the effect of precession-frequency mismatch between 129Xe and 131Xe nuclei under spin-exchange pumping by alkali-metal atoms, Technical Physics Letters, 2018, vol. 44, no. 4, pp. 313–315.

    Article  Google Scholar 

  15. Petrov, V.I., Pazgalev, A.S., and Vershovskii, A.K., isotope shift of nuclear magnetic resonances in 129Xe and 131Xe caused by spin-exchange pumping by alkali metal atoms, IEEE Sensors Journal, 2020, vol. 20, no. 2, pp. 760–766.

    Article  Google Scholar 

  16. Knappe, S., MEMS atomic clocks, Comprehensive Microsystems, 2007, vol. 3, pp. 571–612.

    Google Scholar 

  17. Eklund, E.J., Shkel, A.M., Knappe, S., Donley, E., and Kitching, J., Glass-blown spherical microcells for chip-scale atomic devices, Sensors and Actuators A: Physical, 2008, vol. 143, no. 1, pp. 175–180.

    Article  Google Scholar 

  18. Meyer, D. and Larsen, M., Nuclear Magnetic Resonance gyroscope for inertial navigation, Gyroscopy and Navigation. 2014, vol. 5, no. 2, pp. 75–82.

    Article  Google Scholar 

  19. Bouchiat, M.A. and Brossel, J., Relaxation of optically pumped Rb atoms on paraffin-coated walls, Phys. Rev., 1966, vol. 147, no. 1, pp. 41–54.

    Article  Google Scholar 

  20. Happer, W., Optical Pumping, Rev. Mod. Phys., 1972, vol. 44, no. 2, pp. 169–249.

    Article  Google Scholar 

  21. Zeng, X., Miron, E., Van Wijngaarden, V.A., Schreiber, D., and Happer, W., Wall relaxation of spin polarized 129Xe nuclei, Physics Letters A, 1983, vol. 96, no. 4, pp. 191–194.

    Article  Google Scholar 

  22. Happer, W., Miron, E., Schaefer, S., Schreiber, D., Van Wijngaarden, V.A., and Zeng, X., Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms, Phys. Rev. A, 1984, vol. 29, no. 6, pp. 3092–3110.

    Article  Google Scholar 

  23. Zeng, X., Wu, Z., Call, T., Miron, E., Schreiber, D., and Happer, W., Experimental determination of the rate constants for spin exchange between optically pumped K, Rb, and Cs atoms and 129Xe nuclei in alkali-metal – noble-gas van der Waals molecules, Phys. Rev. A, 1985, vol. 31, no. 1, pp. 260–278.

    Article  Google Scholar 

  24. Hsu, J., Wu, Z., and Happer, W., Cs induced 129Xe nuclear spin relaxation in N2 and He buffer gases, Physics Letters A, 1985, vol. 112, no. 3–4, pp. 141–145.

    Article  Google Scholar 

  25. Wu, Z., Schaefer, S., Cates, G.D., and Happer, W., Coherent interactions of the polarized nuclear spins of gaseous atoms with the container walls, Phys. Rev. A, 1988, vol. 37, no. 4, pp. 1161–1175.

    Article  Google Scholar 

  26. Wu, Z., Happer, W., Kitano, M., and Daniels, J., Experimental studies of wall interactions of adsorbed spin-polarized 131Xe nuclei, Phys. Rev. A, 1990, vol. 42, no. 5, pp. 2774–2784.

    Article  Google Scholar 

  27. Nesmeyanov, A.N., Davleniye para khimicheskikh elementov (Steam Pressure of Chemical Elements), Moscow: Izdatel’stvo Akademii Nauk SSSR, 1961.

  28. Vershovskii, A.K. and Pazgalev, A.S., Optimization of the Q factor of the magnetic Mx resonance under optical pump conditions, Technical Physics, 2008, vol. 53, no. 5, pp. 646–654

    Article  Google Scholar 

  29. Seltzer, S.J., Developments in alkali-metal atomic magnetometry: Ph.D. Thesis. Princeton, NJ, USA: Princeton University, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Vershovskii or V. I. Petrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershovskii, A.K., Petrov, V.I. Modeling of the Dimensional Dependence of NMR Isotope Shift in Xenon. Gyroscopy Navig. 11, 198–205 (2020). https://doi.org/10.1134/S2075108720030086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108720030086

Keywords:

Navigation