Skip to main content
Log in

Compensation of Wave Solid-State Gyro Drifts Caused by Anisotropy of Elastic Properties of a Single-Crystal Resonator

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract—A new mathematical model has been constructed for the motion of a single-crystal resonator of a wave solid-state gyroscope in the form of a thin elastic shell rotating on a moving base, taking into account the influence of an electrostatic system of oscillations excitation. The expression derived for the potential energy of elastic deformation of the resonator takes into account low anisotropy of the cubic crystal type depending on the resonator orientation relative to the crystallographic axes. A discrete model is used to describe the energy of the electrostatic field of control sensors. Using the Lagrange−Maxwell formalism, nonlinear differential equations are obtained that describe, in the single-mode approximation, the oscillations of the elastic shell rotating on a moving base. The forced and free oscillations of the resonator are considered. It is shown that a systematic error caused by anisotropy of the elastic properties of the resonator material can be compensated by the effect of electrostatic forces of the control sensors. Control signals are proposed to compensate these errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Delhaye, F., SpaceNaute® the HRG Based Inertial Reference System of Ariane 6 European space launcher, Gyroscopy and Navigation, 2019, vol. 10, no. 1, pp. 1–6.

    Article  Google Scholar 

  2. Perelyaev, S.E., Summary and analysis of trends in development of strapdown inertial navigation systems based on wave solid-state gyros, Novosti navigatsii, 2018, no. 2, pp. 21–27.

  3. Zhuravlev, V.F. and Klimov, D.M., Volnovoi tverdotelnyi giroskop (Wave solid-state gyroscope), Moscow: Nauka, 1985.

    Google Scholar 

  4. Zhuravlev, V.F., Theoretical foundations of wave solid-state gyroscope (SWG), Izv. RAN. Mekhanika tverdogo tela, no. 3, 1993, pp. 15−26.

  5. Zhuravlev, V.F., A controlled Foucault pendulum as a model of a class of free gyroscopes, Izv. RAN. Mekhanika tverdogo tela, 1997, no. 6, pp. 27–35.

  6. Zhbanov, Yu.K. and Zhuravlev, V.F., On balancing of the hemispherical resonator gyro, Izv. RAN. Mekhanika tverdogo tela, 1998, no. 4, pp. 4–16.

  7. Klimov, D.M., Zhuravlev, V.F., and Zhbanov, Yu.K., Kvartsevyi polusfericheskii rezonator (volnovoi tverdotel’nyi giroskop) (Hemispherical Quartz Resonator (Solid-State Wave Gyroscope)), Moscow: Kim L.A., 2017.

  8. Rozelle, D.M., The hemispherical resonator gyro: From wineglass to the planets, Proc. 19th AAS/AIAA Space Flight Mechanics Meeting, 2009, pp. 1157–1178.

  9. Loper, E.J., Lynch, D.D. Vibratory rotation sensor, US Patent No. 4, 951, 508, 1990.

  10. Merkuryev, I.V. and Podalkov, V.V., Dinamika mikromekhanicheskogo i volnovogo tverdotel’nogo giroskopov (Dynamics of MEMS and Wave Solid-State Gyroscopes), Moscow: Fizmatlit, 2009.

    Google Scholar 

  11. Zhuravlev, V.F., The problem of error identification for a generalized Foucault pendulum, Izv. RAN. Mekhanika tverdogo tela, 2000, no. 5, pp. 186–192.

  12. Matveev, V.A., Lipatnikov, V.I., and Alekhin, A.V., Proektirovanie volnovogo tverdotel’nogo giroskopa (Designing a Wave Solid-State Gyroscope), Moscow: Bauman Moscow State Technical University, 1998.

    Google Scholar 

  13. Asadian, M.H., Wang, Y., Shkel, A.M., Development of 3D fused quartz hemi-toroidal shells for high-Q resonators and gyroscopes, IEEE/ASME Journal of Microelectromechanical Systems, 2019, pp.1380–1383.

  14. Lunin, B.S., Matveev, V.A., and Basarab, M.A., Volnovoj tverdotel’nyj giroskop. Teoriya i tekhnologiya (Solid-State Wave Gyro. Theory and Technology), Moscow: Radiotekhnika, 2014.

    Google Scholar 

  15. Lunin, B.S., Basarab, M.A., Yurin, A.V. and Chumankin E.A., Fused quartz cylindrical resonator for low-cost vibratory gyroscopes, Proc. 25th Anniversary Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 2018, pp. 288–290.

  16. Basarab, M.A., Lunin, B.S., Matveev, V.A., and Chumankin, E.A., Balancing of hemispherical resonator gyros by chemical etching. Gyroscopy and Navigation, 2015, vol. 6, no. 3, pp. 218–223.

    Article  Google Scholar 

  17. Maslov, A.A., Maslov, D.A., and Merkuryev, I.V., RF Patent No. 2544308, NIU MEI Bull. no. 14, 2015.

  18. Desta, Y.M., Fabrication of high aspect ratio vibrating cylinder microgyroscope structures by use of the LIGA process, PhD thesis, USA: Louisiana State University, 2005.

  19. Cho, J., Gregory, J.A. and Najafi, K., Single-crystal-silicon cylindrical rate integrat-ing gyroscope (CING), Transducers’11, Beijing, China, 2011, pp. 2813–2816.

  20. Timoshenkov, S.P., Anchutin, S.A., Plekhanov, V.E., Kochurina, E.S., Timoshenkov, A.S., and Zuev, E.V., Development of mathematical descriptions of the micromechanical ring gyroscope, Nano- i mikrosistemnaya tehnika, 2014, no. 5, pp.18–25.

  21. Senkal, D., Ahamed, M.J., Trusov, A.A., and Shkel, A.M., Achieving sub-Hz frequency symmetry in micro-glassblown wineglass resonators, Journal of Microelectromechanical Systems, 2014, vol. IV 23, no. 1, pp. 30–38.

  22. Sarapulov, S.A., Litvinov, L.A., et al., Particularities of designs and fabrication technology of high-Q sapphire resonators of CRG-1 type solid-state gyroscopes, 14th Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 2007, pp. 47–48.

  23. Filin, A.P., Elementy teorii obolochek (Elements of Shell Theory), Leningrad: Stroyizdat, 1987, 256 p.

    Google Scholar 

  24. Sirotin, I.Yu. and Shaskol’skaya, M.P., Osnovy kristallofiziki (Fundamentals of Crystal Physics), Moscow: Nauka, 1975, 680 p.

    Google Scholar 

  25. Zener, C.M., Elasticity and Anelasticity of Metals. USA, Chicago, Univ. of Chicago Press, 1948.

    MATH  Google Scholar 

  26. Matveev, V.A., Basarab, M.A., Lunin, B.S., Chumankin, E.A., and Yurin, A.V., Thermoelastic losses in structural materials of solid wave gyroscope resonators, Vestnik MGTU im. Baumana, series “Priborostroenie” (Bulletin of Bauman Moscow State University, series “Instrument-making”), 2015, no.2 (101), pp. 28–39.

  27. Martynenko, Yu.G., Merkuryev, I.V., and Podalkov, V.V., Control of nonlinear oscillations of a vibrating ring gyroscope, Izv. RAN. Mekhanika tverdogo tela, 2008, no. 3, pp. 77–89.

  28. Gavrilenko, A.B., Merkuryev, I.V., and Podalkov, V.V., Influence of low viscoelastic anisotropy of material on accuracy characteristics of a wave solid-state gyroscope with the resonator in the form of revolution shell, Vestnik MEI (Bulletin of Moscow Power Engineering Institute), 2010, no. 3, pp. 20–27.

  29. Zhuravlev, V.F. and Lynch, D.D., Electrical model of the wave solid-state gyroscope, Izv. RAN Mekhanika tverdogo tela, 1995, no. 5, pp. 12–24.

  30. Martynenko, Yu.G., Analiticheskaya dinamika elektromekhanicheskikh sistem (Analytical Dynamics of Electromechanical Systems), Moscow: MEI (Moscow Power Engineering Institute), 1984.

  31. Maslov, A.A., Maslov, D.A., and Merkuryev, I.V., Studying stationary oscillation modes of the gyro resonator in the presence of positional and parametric excitations, Gyroscopy and Navigation, 2014, vol. 5, no. 4, pp. 224–228.

    Article  Google Scholar 

  32. Maslov, A.A., Maslov, D.A., and Merkuryev, I.V., Nonlinear effects in dynamics of cylindrical resonator of wave solid-state gyro with electrostatic control system, Gyroscopy and Navigation, 2015, vol. 6, no. 3, pp. 224–229.

    Article  Google Scholar 

  33. Maslov, D.A., Influence of nonlinear properties of electrostatic and electromagnetic control sensors on dynamics of cylindrical resonator of wave solid-state gyroscope, PhD Dissertation Eng. Sci., Moscow: MEI (Moscow Power Engineering Institute), 2019.

  34. Merkuryev, I.V., Dynamics of gyro sensors of orientation and navigation systems for small space vehicles, PhD Dissertation Eng. Sci., Moscow: MEI (Moscow Power Engineering Institute), 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Maslov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, A.A., Maslov, D.A., Merkuryev, I.V. et al. Compensation of Wave Solid-State Gyro Drifts Caused by Anisotropy of Elastic Properties of a Single-Crystal Resonator. Gyroscopy Navig. 11, 214–220 (2020). https://doi.org/10.1134/S2075108720030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108720030050

Keywords:

Navigation