Skip to main content
Log in

Ensuring Radiation Resistance of Fiber Optic Gyroscopes and Ways to Improve It

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The problem of ensuring the radiation resistance of fiber-optic gyroscopes and their main components (optical fibers, elements of integrated optics, optical sources, electronic components and optical materials) is analyzed on the basis of Russian and foreign publications. Possible ways of radiation resistance improvement are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gus’kov, N.A., Fiber optics in the radiation environment, Zarubezhnaya radioelektronika, 1991, no. 8, pp. 52–65.

    Google Scholar 

  2. Bekman, I.N., Radioaktivnost’ i radiatsiya. Kurs lektsii (Radioactivity and Radiation, Course of lectures), Moscow, 2006.

    Google Scholar 

  3. Tomashuk, A.L., Golant, K.M., and Zabezhailov, M.O., Development of optical fibers for use at increased levels of radiation, Volokonno-opticheskie tekhnologii, materialy i ustroistva, 2001, no. 4, pp. 52–65.

    Google Scholar 

  4. Dianov, E.M., Prospects for using the wavelength range of 1–1.6 microns for the implementation of fiber-optic communication, Kvantovaya elektronika, 1980, vol. 7, no. 3, pp. 458–464.

    Google Scholar 

  5. Kirin, I.G., Spetsial’nye radiatsionno ustoychivye volokonno-opticheskie i optoelektronnye datchiki i sistemy (Special Radiation-Resistant Fiber-Optic and Optoelectronic Sensors and Systems), 2008.

    Google Scholar 

  6. Tomashuk, A.L., Dvoretskii, D.A., Lazarev, V.A., Pnev, A.B., Karasik, V.E., Salganskii, M.Yu., Kashaikin, P.F., Hopin, V.F., Gur’yanov, A.N., and Dianov, E.M., Domestic radiation-resistant optical fibers, Vestnik MGTU im. N.E. Baumana, Ser. Priborostroenie, 2016, no. 5, pp. 111–124.

    Google Scholar 

  7. Belyaev, R.A. and Tatsenko, V.G., Radiation resistance of optical fibers, Zarubezhnaya radioelektronika, 1990, no. II, pp. 94–108.

    Google Scholar 

  8. Chigusa, Y., Watanabe, M., Kyoto, M., Ooe, M., and Matsubara, T., γ-Ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation, IEEE Transactions on Nuclear Science, 1988, Feb., vol. 35, no. 1.

    Google Scholar 

  9. Dolgov, I.I., Ivanov, G.A., Chamorovskii, Yu.K., and Yakovlev, M.Ya., Radiation-resistant single-mode optical fibers with a quartz core, Foton-Ekspress, 2005, no. 6 (46), pp. 4–10.

    Google Scholar 

  10. Kashaikin, P.F., Salganskii, M.Yu., Tomashuk, A.L., Abramov, A.N., Khopin, V.F., Gur’yanov, A.N., Nishchev, K.N., and Dianov, E.M., Increasing radiation resistance of optical fibers in MCVD technology, Foton-Ekspress, 2013, no. 6, pp. 152–153.

    Google Scholar 

  11. Aikawa, K., Izoe, K., Shamoto, N., Kudoh, M., and Tsumanuma, T., Radiation resistant single-mode optical fiber and method of manufacturing thereof. U.S. Patent 7440673, Oct. 21, 2008.

    Google Scholar 

  12. Alam, M., Abramczyk, J., Manyam, U., Farroni, J., and Guertin, D., Performance of optical fibers in space radiation environment, International Conference on Space Optics, Noordwijk, The Netherlands, 2006.

    Google Scholar 

  13. Hill, M., Hankey, J., and Gray, R., Radiation tolerant passive and active optical fiber products for use in space environments, Proc. SPIE 10563, International Conference on Space Optics–ICSO 2014, 1056328.

    Google Scholar 

  14. Palatnikov, M.N., Efremov, I.N., Sidorov, N.V., Makarova, O.V., and Kalinnikov, V.T., Studying the properties of gamma-irradiated lithium niobate crystals of different chemical composition, Trudy Kol’skogo nauchnogo tsentra RAN. Khimiya i materialovedenie: Spetsvypusk, 2015, no. 5 (31), pp. 439–443.

    Google Scholar 

  15. Barnes, C. and Greenwel, R., Radiation effects in photonic modulator structures. Photonics for space environments, Proc. of SPIE, 1995, vol. 2482, pp. 48–83.

    Article  Google Scholar 

  16. Pentrack, D., Hatch, J. et al., Effects of combined neutron and gamma radiation on a LiNbO3 directional polarization maintaining coupler (passive) and a large core multimode 1X2 coupler. Photonics for space environments, Proc. of SPIE, 1995, vol. 2482, pp. 109–119.

    Article  Google Scholar 

  17. Lai, C.-C., Chang, C.-Y., Wei, Y.-Y., and Wang, W.-S., Study of gamma-irradiation damage in LiNbO3 waveguides, Photonics Tech. Lett., 2007, 19 (13), pp. 1002–1004.

    Article  Google Scholar 

  18. Kanofsky, A.S., Proton radiation effects on various electro-optical devices, Proc. of SPIE, 1994, vol. 2074, pp. 204–213.

    Article  Google Scholar 

  19. Dewen, L., Wen, X., and Bo, W., Mechanism of radiation effects on fiber optic gyros, ActaOptica Sinica, 2008, 28 (3), pp. 419–422.

    Google Scholar 

  20. Desheng, Z., and Hongkun, H., Effects of proton radiation on LiNbO3 multifunction integrated optical circuit, Semiconductor optoelectronics, 2011, 32(3), pp. 343–347.

    Google Scholar 

  21. Ding, D., et al., The effects of space irradiation on the performances of Y-waveguide multifunction integrated optical circuit, International Conference on Optoelectronics and Microelectronics (ICOM), 2015, pp. 111–114.

    Google Scholar 

  22. Patent RF (Russian Federation) no. 2444704, Aleinik, A.S., Meshkovskii, I.K., and Strigalev, V.E., Fiber-optic gyroscope, Patent holder Concern CSRI Elektropribor, JSC, St. Petersburg, Russia, 26.10.10.

  23. Meshkovskii, I.K., Strigalev, V.E., Deineka, G.B., Peshekhonov, V.G., Volynskii, D.V., and Untilov, A.A., A Three-Axis Fiber-Optical Gyroscope. The Results of the Development and Tests, Gyroscopy and Navigation, 2011, vol. 2, no. 4, pp. 208–213.

    Article  Google Scholar 

  24. Hsu, Z., Peng, Z., Wang, L.A., Liu, R., and Chou, F., Gamma ray effects on double pass backward superfluorescent fiber source for gyroscope application, Proc of SPIE, 2008, vol. 7004, 70044M.

    Google Scholar 

  25. Zhang, B., Wang, W., Wang, X., Li, J., and Wang, D., Research on the irradiation characteristic of erbiumdoped fiber source for high precision fiber-optic gyroscope, Presented at the Inertial Sensors and Systems Conf., Karlsruhe, Germany, 2013.

    Google Scholar 

  26. Likhachev M.E., Zotov K.V., Tomashchuk A.L., Bubnov M.M., Semenov S.L., Kosolapov A.F., YashkovM.V., and Gur’anov A.N., Radiation-resistant erbium optical fibers for gyroscopes and space communication systems, Foton-Ekspress, 2009, no. 6, pp. 17–18.

    Google Scholar 

  27. Brichard, B., et al., Gamma dose rate effect in erbiumdoped fibers for space gyroscopes, 2003, pp. 336–338.

    Google Scholar 

  28. Wang, W., Wang, X., and Xia, J., The influence of Erdoped fiber source under irradiation on fiber optic gyro, Optical Fiber Technology 18, 2012, pp. 39–43.

    Google Scholar 

  29. Girard, S., Tortech, B., Regnier, E., et al., Proton-and gamma-induced effects on erbium-doped optical fibers, IEEE Transactions on Nuclear Science, December 2007, vol. 54, no. 6.

    Google Scholar 

  30. Brichard, B., Fernandez-Fernandez, A., Ooms, H., and Bergmans, F., Study of the radiation-induced optical sensitivity in erbium and aluminum doped fibers, Presented at the RADEC Conf., Noordwijk, The Netherlands, 2003.

    Google Scholar 

  31. Williams, G.M., Putnam, M.A., and Friebele, E.J., Space radiation effects on erbium doped fibers, Proc. SPIE, 1996, vol. 2811, pp. 30–37.

    Article  Google Scholar 

  32. Rose, T.S., Gunn, D., and Valley, G.C., Gamma and proton radiation effects in erbium-doped fiber amplifiers: active and passive measurements, J. Lightw. Technol., 2001, vol. 19, no. 12, pp. 1918–1923.

    Article  Google Scholar 

  33. Williams, G.M. and Friebele, E.J., Space radiation effects on erbium-doped fiber devices: sources, amplifiers and passive measurements, IEEE Transactions on Nuclear Science, 1998, vol. 45, no. 3, pp. 399–404.

    Article  Google Scholar 

  34. Tortech, B., VanUffelen, M., Gusarov, A., et al., Gamma radiation-induced loss in erbium doped optical fibers, J. Non-Cryst. Solids, April 2007, vol. 353, no. 5–7, pp. 477–480.

  35. Van Uffelen, M., Girard, S., Goutaland, F., Gusarov, A., Brichard, B., Berghmans, F., Gamma radiation effects in Er-doped silica fibers, IEEE Transactions on Nuclear Science, October 2004, vol. 51, no. 5, pp. 2763–2769.

    Google Scholar 

  36. Yang, Y. and Yang, F., High performance fiber optic gyroscope with a radiation-tolerant ant temperaturestable scale factor, Chinese Optic Letters, November 2016, col. 14 (11), no. 110605.

    Google Scholar 

  37. Patent RF (Russian Federation) no. 2222032, 20.01.2004. Tomashuk, A.L. et al., Optical fiber (versions) and methods for producing it.

  38. Ding, D., et al., Radiation effects on opto-electronic devices for fiber-optic gyroscopes, Academic International Symposium on Optoelectronics and Microelectronics Technology, 2011, pp. 216–218.

    Google Scholar 

  39. Zhang, C., et al., Space radiation effect on fibre optical gyroscope control circuit and compensation algorithm, Chinese Physics B, 17 (2), 573–577.

  40. Askerov, K.A., Radiation-resistant photodetectors based on layered semiconductors GaSe, InSe, GaTe: Doctor Sci. (Physics and Mathematics) Dissertation, Baku, 2000.

    Google Scholar 

  41. Yudintsev, V., Radiation-resistant integrated circuits. Reliability in space and on Earth. Elektronika: Nauka, Tekhnologiнa, Biznes, 2007, no. 5, pp. 72–77.

    Google Scholar 

  42. Mironenko, L. and Yudintsev, V., Increasing the radiation resistance of integrated circuits. Constructive methods based on industrial technology, Elektronika, 2012, no.8, pp. 74–87.

    Google Scholar 

  43. Sokolov, A.G., Software and hardware methods to improve the radiation resistance of PLIC for SRAM, Sovremennaya elektronika, 2014, no. 6, pp. 30–33.

    Google Scholar 

  44. Mullov, K.D., The impact of space radiation on digital PLIC-based devices and methods for improving the radiation resistance of these systems, Trudy MAI, 2016, vol. 87.

    Google Scholar 

  45. Radiation resistance of adhesives https://doi.org/ftemk.mpei.ru/ctlw/DocHandler.aspx?p=pubs/etm_full/radiationf/06.08.htm. Accessed September 27, 2017.

  46. Irradiation effects of on compounds: https://doi.org/ftemk.mpei.ru/ctlw/DocHandler.aspx?p=pubs/etm_full/radiationf/06.06.htm. Accessed September 27, 2017.

  47. Irradiation effects on resins and sealing materials: https://doi.org/ftemk.mpei.ru/ctlw/DocHandler.aspx?p=pubs/etm_full/radiationf/06.07.htm. Accessed September 27, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Egorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, D.A., Rupasov, A.V. & Untilov, A.A. Ensuring Radiation Resistance of Fiber Optic Gyroscopes and Ways to Improve It. Gyroscopy Navig. 9, 314–324 (2018). https://doi.org/10.1134/S2075108718040107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108718040107

Keywords

Navigation