Nuclear Magnetic Resonance Gyro: Ultimate Parameters

Abstract

The fundamental limitations for the basic metrological parameters of the nuclear magnetic resonance gyro (NMRG) are analyzed. The determinant factors limiting its sensitivity, such as atomic projection noise and light shot noise, are considered. Formulas are derived to estimate the ultimate sensitivity of the NMRG and study its dependence on the parameters of the sensitive element. The main causes of NMRG drifts and possible ways to improve its metrological characteristics are discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Peshekhonov, V.G., Navigatsionnye sistemy (Navigation Systems), Vestnik RAN, 1997, vol. 67, no. 1, pp. 43–52.

    Google Scholar 

  2. 2.

    Peshekhonov, V.G., Gyroscopic navigation systems: Current status and prospects, Gyroscopy and Navigation, 2011, vol. 2, no. 3, pp. 111–118.

    Article  Google Scholar 

  3. 3.

    Karwacki, F. A., Nuclear magnetic resonance gyro development, J. Inst. Navigation, 1980, vol. 27, no. 1, pp. 72–78.

    Article  Google Scholar 

  4. 4.

    Goldstein, M.G. et al., Inertial Navigation, Proc. IEEE, 1983, vol. 71, pp. 1156–1176.

    Article  Google Scholar 

  5. 5.

    Härle, P., Wäckerle, G., and Mehring, M., A Nuclearspin based rotation sensor using optical polarization and detection methods, Appl. Magn. Reson, 1993, vol. 5, pp. 207–220.

    Article  Google Scholar 

  6. 6.

    Kornack, T.W., Ghosh, R.K., and Romalis, M.V., Nuclear spin gyroscope based on an atomic co-magnetometer, Phys. Rev. Lett., 2005, vol. 95, pp. 230801.

    Article  Google Scholar 

  7. 7.

    Kitching, J., Knappe, S., and Donley, E., Atomic Sensors–A Review, IEEE Sensors, 2011, vol. 11, no. 11, pp. 1749–1758.

    Article  Google Scholar 

  8. 8.

    Zhang, C., Yuan, H., Tang, Z., Quan, W., and Fang, J.C., Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory, Appl. Phys. Reviews, 2016, vol. 3, pp. 041305.

    Article  Google Scholar 

  9. 9.

    Meyer, D., and Larsen, M., Nuclear magnetic resonance gyro for inertial navigation, Gyroscopy and Navigation, 2014, vol. 5, no. 2, pp. 75–82.

    Article  Google Scholar 

  10. 10.

    Walker, T.G., Larsen, M.S., Spin-Exchange-Pumped NMR Gyros, Adv. At. Mol. Opt. Phys., 2016, vol. 65, pp. 377–405.

    Google Scholar 

  11. 11.

    Grover, B. C. Noble-Gas NMR Detection through Noble-gas-rubidium hyperfine contact interaction, Phys. Rev. Lett.,1978, vol. 40, no. 6, pp. 391–392.

    Article  Google Scholar 

  12. 12.

    Schaefer, S.R., Cates, G.D., Chien, Ting-Ray, Gonatas, D., Happer, W., and Walker, T. G., Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms, Phys. Rev. A. 1989, vol. 39, no. 11, pp. 5613–5623.

    Article  Google Scholar 

  13. 13.

    Liu, Y., Shi, M., and Wang, X., Progress on atomic gyroscope, Proc. of the 24th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, Russia, 2017, pp. 344–352.

    Google Scholar 

  14. 14.

    Wang, S.G., Xu C., Feng, H.H., and Wang, L.J., Progress on Novel Atomic Magnetometer and Gyroscope Based on Self-sustaining of Electron Spins, China Satellite Navigation Conference (CSNS), 2017, Proc. vol. 2, pp. 535–541.

    Google Scholar 

  15. 15.

    Happer, W., Jau, Y.-Y., and T. Walker, Optically Pumped Atoms, WILEY-VCH Verlag GmbH & Co. KGaA, 2011, p. 234.

    Google Scholar 

  16. 16.

    Gemmel, C., Heil, W., Karpuk, S. et al., Ultra-sensitive magnetometry based on free precession of nuclear spins, Eur. Phys. J. D, 2010, vol. 57, pp. 303–320.

    Article  Google Scholar 

  17. 17.

    Budker, D. and Romalis, M., Optical magnetometry, Nature Physic, 2007, vol. 3, pp. 227–234.

    Article  Google Scholar 

  18. 18.

    Ventsel, E.S., Teoriya veroyatnostei (Probability Theory), Vysshaya Shkola, Moscow, 1999.

    Google Scholar 

  19. 19.

    IEEE std. 1554–2005, IEEE Recommended Practice for Inertial Sensor Test Equipment, Instrumentation, Data Acquisition, and Analysis, IEEE Aerospace and Electronic Systems Society, 2005, Chapter 19.7.2, Velocity and angle random walk per root hour.

    Google Scholar 

  20. 20.

    Cohen-Tannoudji, C., DuPont-Roc, J., Haroche, S., and Laloe, F., Detection of the Static Magnetic Field Produced by the Oriented Nuclei of Optically Pumped 3He Gas, Phys. Rev. Lett., 1969, vol. 22, no. 15, pp. 758–760.

    Article  Google Scholar 

  21. 21.

    Armenise, M. N. et al., Advances in Gyroscope Technologies. Springer-Verlag, Berlin, 2010, (Eq.1.8).

    Google Scholar 

  22. 22.

    Aleksandrov, E.B. and Vershovskii, A.K., Modern radio-optical methods in quantum magnetometry, Physics–Uspekhi, 2009, vol. 52, no. 6, pp. 573–601.

    Google Scholar 

  23. 23.

    Kanegsberg, E., A Nuclear Magnetic Resonance (NMR) Gyro With Optical Magnetometer Detection, Proc. SPIE, 1978, vol. 157, Laser Inertial Rotation Sensors, pp. 73–80.

    Google Scholar 

  24. 24.

    Vershovski, A.K. and Pazgalev, A.S., Optimization of quality factor of optically pumped Mx-resonance, ZhTF (Journal of Technical Physics), 2008, vol. 53, no. 5, pp. 646–654.

    Google Scholar 

  25. 25.

    Pitz, G.A., Wertepny, D.E., and Perram, G.P., Pressure broadening and shift of the cesium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He, Phys. Rev A, 2009, vol. 80, pp. 062718.

    Google Scholar 

  26. 26.

    Zeng, X., Wu, Z., Call, T., Miron, E., Schreiber, D., and Happer, W., Experimental determination of the rate constants for spin exchange between optically pumped K, Rb, and Cs atoms and Xe nuclei in alkalimetal–noble-gas van der Waals molecules, Phys. Review A, 1985, vol. 31, no. 1, pp. 260–278.

    Google Scholar 

  27. 27.

    Happer, W., Spin exchange-past, present, and future, Ann. Phys. Fr., 1985, vol. 10, pp. 645–657.

    Article  Google Scholar 

  28. 28.

    Happer, W., Miron, E., Schaefer, S., Schreiber, D., van Wijngaarden, W. A., and Zeng, X., Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms, Phys. Rev. A, 1984, vol. 29, no. 6, pp. 3092–3110.

    Article  Google Scholar 

  29. 29.

    Cates, G.D., Fitzgerald, R.J., Barton, A.S., Bogorad, P., Gatzke, M., Newbury, N.R., and Saam, B., Rb129Xe spin-exchange rates due to binary and three-body collisions at high Xe pressures, Phys. Rev. A, 1992, vol. 45, no. 5, pp. 4631–4639.

    Article  Google Scholar 

  30. 30.

    Walker, T.G., Happer, W., Spin-exchange optical pumping of noble-gas nuclei, Reviews of Modern Physics, 1997, vol. 69, no. 2, pp. 529–642.

    Article  Google Scholar 

  31. 31.

    Cohen-Tannoudji, C., Dupont-Roc, J., Haroche, S., and Laloë, F., Diverses resonances de croisement de niveaux sur des atomes pompes optiquement en champ nul. I. Theorie, Rev. de Phys. Appl., 1970, vol. 5, pp. 95–101.

    Article  Google Scholar 

  32. 32.

    Bulatowicz, M., Griffith, R., Larsen, M., et al., Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polaized 129Xe and 131Xe Gas, Phys. Rev. Lett., 2013, vol. 111, pp. 102001.

    Google Scholar 

  33. 33.

    Salleras, M., Eklund, E.J., Prikhodko, I.P., and Shkel, A.M., Predictive thermal model for indirect temperature measurement inside atomic cell of nuclear magnetic resonance gyroscope, TRANSDUCERS 2009–International Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, USA, pp. 304–307.

    Google Scholar 

  34. 34.

    Nesmeyanov, A. N., Vapour Pressure of the Elements (translated by J.I. Carasso), Academic Press, NY, 8.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Vershovskii.

Additional information

Original Russian Text © A.K. Vershovskii, Yu.A. Litmanovich, A.S. Pazgalev, V.G. Peshekhonov, 2018, published in Giroskopiya i Navigatsiya, 2018, No. 1, pp. 55–80.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vershovskii, A.K., Litmanovich, Y.A., Pazgalev, A.S. et al. Nuclear Magnetic Resonance Gyro: Ultimate Parameters. Gyroscopy Navig. 9, 162–176 (2018). https://doi.org/10.1134/S2075108718030100

Download citation

Keywords

  • nuclear magnetic gyro
  • nuclear magnetic resonance
  • optical pumping
  • spin-exchange pumping
  • ultimate sensitivity
  • atomic discriminator
  • atomic projection noise