Skip to main content
Log in

Laser Source for a Compact Nuclear Magnetic Resonance Gyroscope

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

Vertical-cavity surface-emitting lasers (VCSELs) of 895 nm spectral range, with fixed direction of output polarization have been developed. These lasers provide single-mode output power of over 1 mW at an operational temperature of 60°С, at orthogonal polarization suppression ratio (OPSR) about 20 dB. The designed VCSELs were used in a laser source for a perspective compact nuclear magnetic resonance gyroscope. The designed laser source provides precise tuning of wavelength to the Cs133 D1 spectral line, and formation of collimated output beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Donley, J. Kitching, Nuclear magnetic resonance gyroscopes. In: Optical magnetometry. Cambridge university press, Ch. 19, pp. 369–386 (2013)

    Google Scholar 

  2. D.K. Serkland, G.M. Peake, K.M. Geib, R. Lutwak, R.M. Garvey; M. Varghese; M. Mescher, VCSELs for atomic clocks, vertical-cavity surface-emitting lasers X, Proc. SPIE 6132, 613208 (2006)

  3. W. Zhong, Review of chip-scale atomic clocks based on coherent population trapping, Chin. Phys. B., vol. 23, No. 3, 030601 (2014)

  4. T.G. Walker, M.S. Larsen, Spin-exchange pumped NMR gyros, Advances in atomic, molecular, and optical physics, v. 65, pp. 373–401 (2016)

    Google Scholar 

  5. P. Knapkewicz, J. Dziuban, R. Walczak, L. Mauri, P. Dziuban, C. Gorecki, MEMS Cesium vapor cell for european micro-atomic-clock, Procedia engineering, vol. 5, pp. 721–724 (2010)

    Article  Google Scholar 

  6. L. Chen, B. Zhou, G. Lei, W. Wu, Y. Zhai, Z. Wang, J. Fang, Effects of temperature on Rb and 129Xe spin polarization in a nuclear magnetic resonance gyroscope with low pump power, AIP Advances, 7, 115101 (2017)

  7. R. Michalzik, VCSELs, Fundamentals, technology and applications of vertical cavity surface-emitting lasers, Springer (2013)

    Google Scholar 

  8. A. Mutig, D. Bimberg, Progress on high-speed 980 nm VCSELs for short-reach optical interconnects, Hindawi publishing corporation advances in optical technologies 2011, 15 (2011)

    Google Scholar 

  9. K.D. Choquette, K.M. Geib, C.I. H. Ashby, R.D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B.E. Hammons, D. Mathes, R. Hull, Advances in selective wet oxidation of AlGaAs alloys, IEEE J. Selected topics in quantum electronics. 3(3), 916–926 (1997)

  10. A. Larsson, Advances in VCSELs for communication and sensing, IEEE J. of Selected Topics in Quantum Electronics 17, 1552–1567 (2011).

    Google Scholar 

  11. J.A. Tatum, Evolution of VCSELs, Proc. of SPIE 9001, 90010C (2013).

    Google Scholar 

  12. https://doi.org/pricetonoptronics.com

  13. https://doi.org/www.laserinterprise.com

  14. A. Al-Samaneh, VCSELs for Atomic clock demonstrators, Annual report 2013, Institute of optoelectronis, Ulm University

  15. https://doi.org/vixarinc.com/pdf/895S-0000-x002.pdf

  16. D.K. Serkland, K.M. Geib, G.M. Peake, R. Lutwak, A. Rashed, M.Varghese, G. Tepolt, M. Prouty, VCSELs for atomic sensors, Vertical-cavity surfaceemitting lasers XI, Proc. SPIE 6484, 648406 (2007)

    Google Scholar 

  17. W. Carl Wilmsen, Henryk Temkin, Larry A. Coldren, Vertical-cavity surface-emitting lasers: design, fabrication, characterization, and applications, Cambridge university press (2001)

    Google Scholar 

  18. Y.-C. Chang, L.A. Coldren, Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers, IEEE J. Selected topics quantum. Electron., 15, 704–715 (2009)

    Google Scholar 

  19. G.W. Pickrella, D.A. Louderbacka, M.A. Fisha, J.J. Hindia, H.C. Lina, M.C. Simpsona, P.S. Guilfoylea, K.L. Lear, Compositional grading in distributed Bragg reflectors, using discrete alloys, in vertical-cavity surface-emitting lasers, Journal of Crystal Growth, 280, 54–59 (2005)

    Google Scholar 

  20. N.A. Maleev, A.G. Kuz’menkov, M.M. Kulagina, Yu.M. Zadiranov, A.P. Vasil’ev, S.A. Blokhin, A.S. Shulenkov, S.I. Troshkov, A.G. Gladyshev, A.M. Nadtochiy, M.M. Pavlov, M.A. Bobrov, D.E. Nazaruk, V.M. Ustinov, Single-spatial-mode semiconductor VCSELs with a nonplanar upper dielectric DBR, Semiconductors, vol.47, pp. 993–996 (2013)

    Article  Google Scholar 

  21. S.A. Blokhin, N.A. Maleev, A.G. Kuz’menkov, and V.M. Ustinov, RF Patent No. 2611555, priority date 17 December, 2015.

    Google Scholar 

  22. M.A. Verschuuren, P. Gerlach, H.A. van Sprang, A. Polman, Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography, Nanotechnology 22, 505201 (2011)

    Article  Google Scholar 

  23. D.E. Nazaruk, S.A. Blokhin, N.A. Maleev, M.A. Bobrov, A.G. Kuzmenkov, A.P. Vasil’ev, A.G. Gladyshev, M.M. Pavlov, A.A Blokhin, M.M. Kulagina, K.A. Vashanova, Yu.M. Zadiranov, A.G. Fefelov, V.M. Ustinov, Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers, J. Phys.: Conf. Ser., v. 572, 1 ArtNo: #012036 (2014)

    Google Scholar 

  24. Akira Sakamoto, Takeshi Nakamura, Hideo Nakayama, Fabrication control during AlAs oxidation of the VCSELs via optical probing technique of AlAs lateral oxidation (OPTALO), Proc. of SPIE 4649, 211–217 (2002)

    Book  Google Scholar 

  25. G.R. Hadley, Effective index model for vertical-cavity surface-emitting lasers, Opt. Lett., Vol. 20. P.1483–1485 (1995)

    Google Scholar 

  26. S.A. Blokhin, M.A. Bobrov, A.G. Kuzmenkov, A.A. Blokhin, A.P. Vasil’ev, Yu.A. Guseva, M.M. Kulagina, I.O. Karpovsky, Yu.M. Zadiranov, S.I. Troshkov, N.D. Prasolov, P.N. Brunkov, V.S. Levitsky, V. Lisak, N.A. Maleev, V.M. Ustinov, A study of distributed dielectric Bragg reflectors for vertically emitting lasers of the near-IR range, Tech. Phys. Lett., v. 42, pp. 1049–1053 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Maleev.

Additional information

Original Russian Text © N.A. Maleev, S.A. Blokhin, M.A. Bobrov, A.G. Kuz’menkov, M.M. Kulagina, V.M. Ustinov, 2018, published in Giroskopiya i Navigatsiya, 2018, No. 1, pp. 81–92.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleev, N.A., Blokhin, S.A., Bobrov, M.A. et al. Laser Source for a Compact Nuclear Magnetic Resonance Gyroscope. Gyroscopy Navig. 9, 177–182 (2018). https://doi.org/10.1134/S2075108718030057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108718030057

Keywords

Navigation