Skip to main content
Log in

Comparison of Time Scales by the Common-View Method Using GLONASS Measurements and Taking into Account the Integer Property of Phase Ambiguities

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

Comparison of time scales by a differential method using signals from global navigation satellite systems (GNSS) is discussed. The results of the experimental study show the possibility of taking into account the integer property of ambiguities of GLONASS navigation satellites. The random error in the comparison of time scales is about 55 picoseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melbourne, W.G., The case for ranging in GPS-based geodetic systems, Proc. 1st International Symposium on Precise Point Positioning with the Global Positioning System, 1985, pp. 373–386.

    Google Scholar 

  2. Wubbena, G., Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements, Proc. 1st International Symposium on Precise Point Positioning with the Global Positioning System, 1985, pp. 403–412.

    Google Scholar 

  3. Petit, G., Kanj, A., Loyer, S., Delporte, J., Mercier, F., and Perosanz, F. 1 × 10-16 frequency transfer by GPS PPP with integer ambiguity resolution, Metrologia, 2015, vol. 52, no. 2, pp. 301–309.

    Article  Google Scholar 

  4. Penzin, K.V., Algorithms of online processing of multichannel measurements by the maximum credibility criterion, Radiotekhnika i elektronika, 1990, vol. 35, no. 1, pp. 97–106.

    Google Scholar 

  5. Perov, A.I. and Kharisov, V.N., GLONASS: printsipy postroeniya i funktsionirovaniya (GLONASS: Principles of Construction and Functioning), Moscow, Radiotekhnika, 2010.

    Google Scholar 

  6. Povalyaev, A.A., Sputnikovye radionavigatsionnye sistemy: vremya, pokazaniya chasov, formirovanie izmerenii i opredelenie otnositel’nykh koordinat (Radionavigation Satellite Systems: Time, Clock Readings, Measurement Formation, and Determination of Relative Coordinates, Moscow, Radiotekhnika, 2008.

    Google Scholar 

  7. Yao, J., Skakun I., Jiang, Z., and Levine, J., A detailed comparison of two continuous GPS carrier-phase time transfer techniques, Metrologia, 2015, vol. 52, no. 5, p.666.

    Article  Google Scholar 

  8. Defraigne, P. and Bruyninx, C., On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions, GPS Solutions, 2007, vol. 11, no. 4, pp. 239–249.

    Article  Google Scholar 

  9. Sleewagen, J., Simsky, A., Wilde, W.D., Boon, F., and Willems, T., Demystifying GLONASS inter-frequency carrier phase biases, Inside GNSS, May/June, 2012.

    Google Scholar 

  10. Delporte, J., Mercier, F., Laurichesse, D., and Galy, O., GPS Carrier-Phase Time Transfer Using Single-Difference Integer Ambiguity Resolution, International Journal of Navigation and Observation, 2008, vol. 2008, p. e273785.

    Article  Google Scholar 

  11. Hanson, D.W., Fundamentals of two-way time transfers by satellite, Proc. 43rd Annual Symposium on Frequency Control, 1989, pp. 174–178.

    Chapter  Google Scholar 

  12. Hauschild, A. and Montenbruck, O., The effect of correlator and front-end design on GNSS pseudorange biases for geodetic receivers, Navigation, 2016, vol. 63, no. 4, pp. 443–453.

    Article  Google Scholar 

  13. Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., GNSS–Global Navigation Satellite Systems, Vienna: Springer Vienna, 2008.

    Google Scholar 

  14. Laurichesse, D., Mercier, F., Berthias, J.-P., Broca, P., and Cerri, L., Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination, Navigation, 2009, vol. 56, no. 2, pp. 135–149.

    Article  Google Scholar 

  15. Tatarnikov, D.V. and Astakhov, A.V., Approaching millimeter accuracy of GNSS positioning in real time with large impedance ground plane antennas, Proc. ION ITM, 2014, pp. 844–848.

    Google Scholar 

  16. Teunissen, P.J.G., The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation, Journal of Geodesy, 1995, vol. 70, no. 1–2, pp. 65–82.

    Article  Google Scholar 

  17. Rost, M., Piester, D., Yang, W., Feldmann, T., Wübbena, T., and Bauch, A., Time transfer through optical fibres over a distance of 73 km with an uncertainty below 100 ps., Metrologia, 2012, vol. 49, no. 6, p.772.

    Article  Google Scholar 

  18. Verhagen, S., The GNSS integer ambiguities: estimation and validation, TU Delft, Delft University of Technology, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Skakun.

Additional information

Original Russian Text © I.O. Skakun, V.V. Mitrikas, 2017, published in Giroskopiya i Navigatsiya, 2017, No. 4, pp. 95–107.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skakun, I.O., Mitrikas, V.V. Comparison of Time Scales by the Common-View Method Using GLONASS Measurements and Taking into Account the Integer Property of Phase Ambiguities. Gyroscopy Navig. 9, 138–146 (2018). https://doi.org/10.1134/S2075108718020074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108718020074

Keywords

Navigation