Skip to main content
Log in

Aircraft navigation using MEMS IMU and ground radio beacons

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

Navigation of a small-sized aircraft is discussed using integrated data from MEMS-based IMU and receiver of ground radio beacon signals within an integrated tightly-coupled orientation and navigation system (IONS). IONS algorithms and errors in orientation and navigation parameters are considered both during prestart IMU error calibration with external aiding over a limited time interval and during simulation of aircraft flight along a preset path. Data in IONS are integrated using the extended Kalman filter (EKF). In simulation modeling of IONS functioning algorithms in Matlab (Simulink) we used data of bench tests of MEMS sensors developed by Elektropribor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peshekhonov, V.G., Gyroscopic navigation systems: Current status and prospects, Gyroscopy and Navigation, 2011, vol. 2, no. 3, pp. 111–118.

    Article  Google Scholar 

  2. Evstifeev, M.I., Eliseev, D.P., and Chelpanov, I.B., Enhancing the mechanical resistance of micromechanical gyros, Gyroscopy and Navigation, 2015, vol. 6, no. 2, pp. 115–123.

    Article  Google Scholar 

  3. Inertial Measurement Units on Micromechanical Sensors, IEEE A&E SYSTEMS MAGAZINE, OCTOBER 2008.

  4. http://www.elektropribor.spb.ru/rufrset.html

  5. http://www.isense.ru/rus/index.htm

  6. Mezentsev, A.P., Frolov, E.N., Klimkin, M.Yu., and Mezentsev, O.A., Development, production and test results for a medium-accuracy MEMS INS AIST-320 based on Coriolis vibratory gyro AIST-100, 14th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 2007, pp. 9–18.

    Google Scholar 

  7. Coffee, J.R. and Maganty, P., An integrated DGPS/INS navigation system for a ballistic missile: Design and flight test results, Navigation: Journal of The Institute of Navigation, 1996, vol. 43, no. 3, pp. 273–293.

    Article  Google Scholar 

  8. http://www.military-informer.narod.ru/grad.html

  9. Gai, E., Guiding munitions with a micromechanical INS/GPS system, 5th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 1998.

    Google Scholar 

  10. Minor, R.R. and Rowe, D.W., Utilization of a magnetic sensor to compensate a MEMS-IMU/GPS and despin strapdown on rolling missiles, United States Patent № 6,208,936. Mar. 27, 2001.

    Google Scholar 

  11. Blazhnov, B.A., Yemeliantsev, G.I., Koshaev, D.A., Semenov, I.V., Stepanov, A.P. et al., A Tightly Coupled Integrated Inertial Satellite System of Attitude and Navigation, 16th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 2009, pp. 182–190.

    Google Scholar 

  12. Vodicheva, L.V., Alievskaya, E.L., Koksharov, E.A., and Parysheva, Yu.V., Improving the accuracy of angular rate determination for spinning vehicles, Gyroscopy and Navigation, 2012, vol. 3, no. 3, 159–168.

    Article  Google Scholar 

  13. Zhbanov, Yu.K., Alekhova, E.Yu., Petelin, V.L., Slezkin, L.N., and Tereshkin, A.I., Scale factor correction of the strapdown angular rate pick-off of the fast rotating object, 18th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 2011, pp. 113–114.

    Google Scholar 

  14. Raspopov, V.Ya., Strapdown inertial navigation system for rotating flying vehicles, 20th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 2013.

    Google Scholar 

  15. Vander Velde, W., Cafarella, J., Tseng, H.-W., Dimos, G., and Upadhyay, T., GPS-based measurement of roll rate and roll angle of spinning platforms, USPatent № US2010/0117894 15.05.2010.

  16. Emel’yantsev, G.I. and Stepanov, A.P., Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated Inertial-Satellite Orientation and Navigation Systems), St. Petersburg: Concern CSRI Elektropribor, 2016.

    Google Scholar 

  17. Veremeenko, K.K., Zheltov, S.Yu., et al., Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel’nykh apparatov (Modern Information Technologies in Problems of Navigation and Guidance of Maneuverable Unmanned Aerial Vehicles), Krasil’shchikov, M.N., Sebryakov, G.G., Eds., Moscow: Fizmatlit, 2009.

  18. Layh, T. and Gebre-Egziabher, D., A fault-tolerant integrated navigation system architecture for UAVs, Proceedings of the 2015 International Technical Meeting, ION ITM 2015, Danna Point, California, January, 6-28, 2015, pp.702–712.

    Google Scholar 

  19. Borsoev, V.A., Galeev, R.G., Grebennikov, A.V., and Kondrat’ev, A.S., Using GLONASS/GPS pseudolites in aircraft landing systems, Nauchnyi vestnik MGTU GA, 2011, no. 164, pp. 17–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Stepanov.

Additional information

Original Russian Text © G.I. Emel’yantsev, A.P. Stepanov, B.A. Blazhnov, 2017, published in Giroskopiya i Navigatsiya, 2017, No. 1, pp. 3–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emel’yantsev, G.I., Stepanov, A.P. & Blazhnov, B.A. Aircraft navigation using MEMS IMU and ground radio beacons. Gyroscopy Navig. 8, 173–180 (2017). https://doi.org/10.1134/S207510871703004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207510871703004X

Navigation