Skip to main content
Log in

Accuracy of sensor bias estimation and its relationship with Allan variance

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper discusses the relationship between Allan variance and error variance of sensor bias estimate obtained by averaging over a certain period. Allan variance is shown to coincide with this variance in some cases. Bias estimation accuracy can be improved using nonlinear filtering methods in the conditions of uncertain error model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sveshnikov, A.A., Prikladnye zadachi teorii sluchainykh funktsii (Applied Problems of Theory of Random Functions), Nauka, 1968.

    Google Scholar 

  2. Bendat, J. and Piersol. A., Random Data: Analysis and Measurement Procedures, Wiley, 2000.

    MATH  Google Scholar 

  3. Prokhorov, S.A., Prikladnoi analiz sluchainykh protsessov (Applied Analysis of Applied Processes), Samara, 2007.

    Google Scholar 

  4. Shevlyakov, G.L. and Lyubomischenko, N.S., Robust estimation of time series spectra: Brief overview of methods and algorithms, Materialy XXIX konferentsii pamyati N.N. Ostryakova (Proceedings of the 29th Conference in Memory of N.N. Ostryakov), 2014.

    Google Scholar 

  5. Sergienko, A.B., Tsifrovaya obrabotka signalov (Digital Signal Processing), St. Petersburg, 2002.

    Google Scholar 

  6. Stepanov, O. A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Part 2. Vvedenie v teoriyu fil’tratsii (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing. Part 2. Introduction to Filtering Theory), St. Petersburg: CSRI Elektropribor, 2012.

    Google Scholar 

  7. Allan, D.W., Statistics of atomic frequency standards, Proc. of the IEEE, 1996, 54(2), pp. 221–230.

    Article  Google Scholar 

  8. Howe, D., Allan, D., and Barnes, J., Properties of signal sources and measurement methods, Proceedings of the 35th Annual Symposium on Frequency Control, 1981, pp. 464–469.

    Google Scholar 

  9. Tehrani, M.M., Ring laser gyro data analysis with cluster sampling technique, Proceedings of SPIE, 1983, vol. 412.

  10. Ng, L.C. and Pines, D.J., Characterization of ring laser gyro performance using the Allan variance method, Journal of Guidance, Control, and Dynamics, 1997, vol. 20, no. 1, pp. 211–214.

    Article  MATH  Google Scholar 

  11. Kucherkov, S.G. et al., Using Allan variance in characterization of MEMS gyro, Giroskopyia i Navigatsiya, 2003, no. 2 (41), pp. 98–104.

    Google Scholar 

  12. Siraya, T.N., Allan variance as an estimate of measurement error, Giroskopiya i Navigatsiya, 2010, no. 2(69), pp. 29–36.

    Google Scholar 

  13. Krobka, N.N., Differential methods of identifying gyro noise structure, Gyroscopy and Navigation, 2011, no. 3, pp. 126–137.

    Article  Google Scholar 

  14. Allan, D.W., Historicity, strengths, and weaknesses of Allan variances and their general applications, 22nd St. Petersburg International Conference on Integrated Navigation Systems, Panel discussion “Methods for Navigation Sensor Performance Determination”, St. Petersburg: Elektropribor, 2015, pp. 507–524.

    Google Scholar 

  15. Krobka, N.I., On the topology of the Allan variance graphs and typical misconceptions in the interpretation of the structure of the gyro noise (Based on the examples of reports at the St. Petersburg International Conference on Integrated Navigation Systems), 22nd St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2015, pp. 525–550.

    Google Scholar 

  16. Kutovoy, V.M., Kutovoy, D.A., Maslova, O.I., Perepelkina, S.Yu., Sitnikov, P.V., and Fedotov, A.A., Use of Allan variance for practical assessment of noise structure of SINS sensing elements, 22nd St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2015, pp. 249–252.

    Google Scholar 

  17. Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Nonlinear Filtering Theory as Applied to Navigation Data Processing), St. Petersburg, CSRI Elektropribor, 2003.

    Google Scholar 

  18. Stepanov, O.A., Dolnakova, A.S., and Sokolov, A.I., Analysis of potential accuracy of estimating random process parameters in navigation data processing, XII Vserossiiskoe soveshchanie po problemam upravleniya (12th Russian Meeting on Control Problems), Russia, Moscow, 16−19 June 2014.

    Google Scholar 

  19. Motorin, A.V. and Stepanov, O.A., Identification of sensor errors: Allan variance vs nonlinear filtering, 21st St. Petersburg International Conference on Integrated Navigation Systems, 2014, pp. 123–128.

    Google Scholar 

  20. Stepanov, O.A., Motorin, A.V., Vasil’ev, V.A., and Toropov, A.B., Using nonlinear filtering methods in constructing sensor error models and map errors, Materialy XXIX konferentsii pamyati N.N. Ostryakova (Proceedings of the 29th Conference in Memory of N.N. Ostryakov), 2014.

    Google Scholar 

  21. IEEE Std 528-2001, IEEE Standard for Inertial Sensor Terminology, IEEE Aerospace and Electronic Systems Society, 2001.

  22. IEEE std. 1554–2005, IEEE Recommended Practice for Inertial Sensor Test Equipment, Instrumentation, Data Acquisition, and Analysis. IEEE Aerospace and Electronic Systems Society, 2005.

  23. Stepanov, O.A. and Toropov, A.B., Using sequential Monte-Carlo methods and analytical integration in navigation data processing, XII Vserossiiskoe soveshchanie po problemam upravleniya (12th Russian Meeting on Control Problems), Russia, Moscow, 16–19 June 2014.

    Google Scholar 

  24. Motorin, A.V., Toropov, A.B., and Stepanov, O.A., Multialternative filtering as applied to estimation of sensor error model, Materialy XVII konferentsii molodykh uchenykh “Navigatsiya i Upravlenie Dvizheniem” (Proceedings of the 17th Conference of Young Scientists “Navigation and Motion Control”), 2015, pp. 267–274.

    Google Scholar 

  25. Bucy, R.S. and Senne, K.D., Digital synthesis of nonlinear filters, Automatica, 1971, no. 7(3), pp. 287–298.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Stepanov.

Additional information

Original Russian Text © O.A. Stepanov, I.B. Chelpanov, A.V. Motorin, 2016, published in Giroskopiya i Navigatsiya, 2016, No. 3, pp. 63–74.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, O.A., Chelpanov, I.B. & Motorin, A.V. Accuracy of sensor bias estimation and its relationship with Allan variance. Gyroscopy Navig. 8, 51–57 (2017). https://doi.org/10.1134/S2075108717010072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108717010072

Navigation