Skip to main content
Log in

Estimating quantum limits on SINS accuracy based on accurate error equations

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

The paper is dedicated to the 100th anniversary of the birth of V.I. Kuznetsov and A.Yu. Ishlinskii, Academicians of the Academy of Sciences of the USSR, to the 100th anniversary of Sagnac experiment, and to the 50th anniversary of laser gyroscopy

Abstract

Accurate error equations for strapdown interial navigation system (SINS) are derived partly with account of nonideal onboard time scale. Comments are given on specific features of SINS behaviour unnoticed earlier using approximate equations of INS errors. Error equations are first proposed to improve SINS accuracy as well as to analyze it. Limits on SINS accuracy due to quantum noise of Sagnac effect gyros such as laser and fiber-optic gyros and atom interferometers on de Broiglie waves [1] are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krobka, N.I., The Concept of Accurate Equations of Errors and Estimations of Quantum Limits of Accuracy of Strapdown Inertial Navigation Systems Based on Laser Gyros, Fiber-Optical Gyros, and Atom Interferometers on de Broglie Waves, 17th Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2010, pp. 95–112.

    Google Scholar 

  2. Durfee, D.S., et al., Long-Term Stability of an Area-Reversible Atom-Interferometer Sagnac Gyroscope, Phys. Rev. Lett., 2006, vol. 97, no. 24, p. 240801.

    Article  Google Scholar 

  3. Jekeli, C., Navigation Error Analysis of Atom Interferometer Inertial Sensor, Navigation, Journal of The Institute of Navigation, 2005, vol. 52, no. 1, pp. 1–14.

    Google Scholar 

  4. Krobka, N.I., Laser Gyroscopy Investigations at Scientific Research Institute of Applied Mechanics, Memoirs of N.I. Krobka, Deputy Chief Designer for laser gyroscopy, Scientific Research Institute of Applied Mechanics, in Prioritet-tochnost’. FGUP NII PM im.Akad. V.I. Kuznetsova 50 let (Accuracy is the Priority: The 50th Anniversary of Kuznetsov Scientific Research Institute of Applied Mechanics), Sapozhnikov, I.N., Ed., Moscow: Restart, 2006, pp. 161–165.

    Google Scholar 

  5. Krobka, N.I., Three-Axis Laser Gyroscopes and Theory of Their Application in Strapdown Inertial Systems, Cand. Sci. (Physics and Mathematics), Moscow, 1985.

    Google Scholar 

  6. Krobka, N.I. and Sapozhnikov, I.N., Works on Laser Gyroscopy in Applied Mechanics Scientific Research Institute named after academician V.I. Kuznetsov, The First International Conference on Inertial Technology, St. Petersburg, 1994, pp. 3–12.

    Google Scholar 

  7. Gilvarry, J.J., Browne, S.H., and Williams, I.K., Theory of Blind Navigation by Dynamical Measurements, J. of Applied Physics, 1950, vol. 21, no. 8, pp. 753–761.

    Article  MathSciNet  Google Scholar 

  8. Andreev, V.D., Teoriya inertsial’noi navigatsii. Avtonomnye sistemy (Theory of Inertial Navigation. Autonomous Systems), Moscow: Nauka, 1966.

    Google Scholar 

  9. Andreev, V.D., Teoria inertsial’noi navigatsii. Korrektiruemye sistemy (Theory of Inertial Navigation. Aided Systems), Moscow: Nauka, 1967.

    Google Scholar 

  10. Matveev, V.V. and Raspopov, V.Ya., Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh sistem (Fundamentals of Designing Strapdown Inertial Navigation Systems), Raspopov, V.Ya., Ed., St. Petersburg: Elektropribor, 2009.

  11. Golovan, A.A. and Parusnikov, N.A., Matematicheskie osnovy navigatsionnykh sistem (Mathematical Foundations of Navigation Systems), vol. 1, Moscow: Moscow State University, 2010, 2nd ed.

    Google Scholar 

  12. Krobka, N.I., Accurate Error Equations of the Strapdown Inertial Navigation Systems, The Second Soviet-Chinese Symposium of Inertial Tecnology, Peshekhonov, V.G., Ed., St. Petersburg: Elektropribor, 1992, pp. 43–50.

    Google Scholar 

  13. Branets, V.N. and Shmyglevskii, I.P., Primenenie kvaternionov v zadachakh orientatsii tverdogo tela (Using Quaternions in Determination of Solid Body Attitude), Moscow: Nauka, 1973.

    MATH  Google Scholar 

  14. Lombardi, M.A., Heavner, T.P., and Jefferts, S.R., NIST Primary Frequency Standards and the Realization of the SI Second, Measure, 2007, vol. 2, no. 4, pp. 74–89.

    Google Scholar 

  15. Chetaev, N.G., Teoreticheskaya mekhanika (Theoretical Mechanics), Rumyantsev, V.V. and Yakimova, K.E., Eds., Moscow: Nauka, 1987.

  16. Amos, J., Gravity Satellite Yields ‘Potato Earth’ view, URL: http://www.bbc.co.uk/news/science-environment-12911806.

  17. Krobka, N.I., et al., On One Misconception, Unnoticed for Many Decades, in the Theory of Inertial Navigation, 20th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2013, pp. 80–86.

    Google Scholar 

  18. Pavlis, N.K., The Global Gravitational Model EGM2008, 10th International IGeS Geoid School “The Determination and Use of the Geoid”. St. Petersburg, Russia, June 28–July 2, 2010.

  19. Fiziki prodolzhayut shutit’ (Physicists Continue to Joke), Turchin, V., Ed., Moscow: Mir, 1968.

    Google Scholar 

  20. Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti (Lectures on Mathematical Stability Theory), Moscow: Nauka, 1967.

    Google Scholar 

  21. Krobka, N.I., Non-Commutative Kinematic Effects and Laws of Fiber-Optic Gyro Noise Accumulation in Strapdown Inertial Orientation Systems, 16th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2009, pp. 69–72.

    Google Scholar 

  22. Akhmanov, S.A., D’yakov, E.Yu., and Chirkin, A.S., Vvedenie v statisticheskuyu radiofiziku i optiku (Introduction to Statistical Radiophysics and Optics), Moscow: Nauka, 1981.

    Google Scholar 

  23. Dorschner, T.A., Haus, H.A., Holz, M., Smith, I.W., and Statz, H., Laser Gyro at Quantum Limit, IEEE J. of Quantum Electronics, 1980, vol. 16, no. 12, pp. 1376–1379.

    Article  Google Scholar 

  24. Simpson, J.H., A Fundamental Noise Limit to RLG Performance, IEEE NAECON’80, pp. 80–83.

  25. Hammons, S.W. and Ashby, V.J., Mechanically Dithered RLG at the Quantum Limit, IEEE NAECON’82, 1982, pp. 388–392.

    Google Scholar 

  26. Sanders, S.J., Strandjord, L.K., and Mead, D., Fiber Optic Gyro Technology Trends-A Honeywell Perspective, 15th Optical Fiber Sensors Conference Technical Digest, vol. 1, 2002, p. 5–8.

    Article  Google Scholar 

  27. Pavlath, G.A., Fiber Optic Gyro Based Inertial Navigation Systems at Northrop Grumman, 15th Optical Fiber Sensors Conference Technical Digest, vol. 1, 2002, p. 9.

    Article  Google Scholar 

  28. Scully, M.O. and Dowling, J.P., Quantum-Noise Limits to Matter-Wave Interferometry, Phys. Rev. A, 1993, vol. 48, no. 4, pp. 3186–3190.

    Article  Google Scholar 

  29. Everitt, C.W.F., et al., Gravity Probe B: Final Results of a Space Experiment to Test General Relativity, Phys. Rev. Lett., 2011, vol. 106, no. 22, p. 221101.

    Article  Google Scholar 

  30. Krobka, N.I., Quantum Micromechanics: Gyros Based on de Broiglie Waves and Quantum Nature of Superfluidic Liquids. Development Trends and State of the Art, Giroskopiya i Navigatsiya, 2009, no. 3, pp. 36–55.

    Google Scholar 

  31. Dowling, J.P., Correlated Input-Port, Matter-Wave Interferometer: Quantum-Noise Limits to the Atom-Laser Gyroscope, Phys. Rev. A, 1998, vol. 57, no. 6, pp. 4736–4746.

    Article  Google Scholar 

  32. Matthews, A. and Welter, H., Cost-Effective, High-Accuracy Inertial Navigation, Navigation. Journal of The Institute of Navigation, 1989, vol. 36, no. 2, pp. 157–172.

    Google Scholar 

  33. Final report on the research Issledovanie vozmozhnostei i putei sozdaniya printsipial’no novykh tipov vysokopretsizionnykh giroskopov na obobshchennom effekte San’yaka (na volnakh de Broilya, Bose-Einshtein kondensatakh i sverkhtekuchesti geliya) i mikromekhanicheskikh giroskopov povyshennoi tochnosti s raznesennymi chastotami vozbuzhdeniya i s’ema dlya upravleniya dvizheniem kosmicheskikh apparatov (Studying the Feasibility and Methods of Creating Principally New High Precision Gyros Based on General Sagnac Effect (de Broiglie Waves, Bose-Einstein Condensates and Helium Superfluidity) and MEMS Gyros of Enhanced Accuracy with Spaced Drive and Sense Frequencies for Spacecraft Motion Control), Principal investigator N.I. Krobka, Federal State Unitary Enterprise Center for Ground-Based Space Infrastructure, Kuznetsov Scientific Research Institute of Applied Mechanics, vols. 1–7, 2012.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Giroskopiya i Navigatsiya, 2013, No. 4, pp. 46–59.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krobka, N.I. Estimating quantum limits on SINS accuracy based on accurate error equations. Gyroscopy Navig. 5, 9–19 (2014). https://doi.org/10.1134/S2075108714010064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108714010064

Keywords

Navigation