Skip to main content
Log in

A new noncommutative kinematic effect and its manifestations in strapdown inertial orientation systems based on fiber optic gyros

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

A brief survey of the developments in fiber optic gyros for space applications is given. The results of studies of strapdown inertial orientation systems (SIOS) based on triaxial fiber optic gyro are presented. A method for analytical estimation of strapdown inertial orientation system accuracy is given. A variant of a triaxial fiber optic gyro (FOG) with one common emitter is considered. The specific feature of such triaxial FOG is as follows: whereas in the noise correlation matrix of the triaxial fiber optic gyro with three autonomous single-axis FOG, only three diagonal elements are nonzero, in the case of the triaxial FOG with one common emitter, all nine elements in the noise correlation matrix are nonzero. The difference in noise correlations in three measurement channels of the triaxial FOG may result in a considerable (by orders of magnitude) difference in the precision of SIOS. This new noncommutative kinematic effect that was not noticed earlier in gyroscopy and navigation is analyzed using the SIOS based on fiber optic gyros [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krobka, N.I., “Specific Features of Strapdown Inertial Orientation Systems Based on Triaxial Fiber Optic Gyros with One Common Emission Source,” in Proceedings of Jubilee XV St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: CSRI “Elektropribor,” 2008, pp. 87–89.

  2. Barbour, N.M., Elwell, J.M., and Setterlund, R.H., “Inertial Instruments: Where to Now?”, in Proceedings of AIAA GNC Conference, Hilton Head, SC, 10–12 August, 1992, pp. 566–574.

  3. Barbour, N.M. and Schmidt, G.T., “Inertial Sensor Technology Trends,” in Proceedings of 1998 Workshop on Autonomous Underwater Vehicles, 20–21 August, 1998, Cambridge, MA, pp. 55–62.

  4. Sanders, S.J., Strandjord, L.K., and Mead, D., “Fiber Optic Gyro Technology Trends-a Honeywell Perspective,” in Proceedings of 15 Optical Fibers Conference Technical Digest, 2002, OFS 2002, vol. 1, pp. 5–8.

    Google Scholar 

  5. Pavlath, G.A., “Fiber Optic Gyro Based Inertial Navigation Systems at Northrop Grumman”, in Proceedings of 15 Optical Fibers Conference Technical Digest, 2002, OFS 2002, vol. 1, p. 9.

    Google Scholar 

  6. “High Performance Fiber Optic Gyro-Based Inertial Reference System/DFOISR#03-S-1917, www.honey-well.com.

  7. “FOG2005”, www.northropgrumman.com.

  8. “Astrix 200 Fiber Optic Gyro. AVery High Performance FOG Inertial Measurement Unit for Accuracy Demanding Satellites,” www.astrium.eads.net.

  9. “IMU 90 & 120. FOG Inertial Measurement Unit”, http://www.ixsea.com/en.

  10. Yang, Y., Wang, Z., Yi, X., and Zhang, W., “High Precision Fiber Optic Gyro Based on Er-Doped Superfluorescent Fiber Source”, J. Beijing Univ. of Aeronautics and Astronautics, 2005, no. 11; www.ilib.cn/A-bjhkhtdxxb200511001.html.

  11. “Research on the Influence of the Source Degree of Polarization on the Bias Stability of Interference Fiber Optical Gyro”, Opt. Techn., 2006, no. 6; www.ilib.cn/A-gxis2006030.html.

  12. www.optolink.ru;www.fizoptika.ru.

  13. www.draper.com; www.honeywell.com; www.northropgrumman.com; www.astrium.eads.net.

  14. Luk’yanov, D. P., “Laser and Fiber Optic Gyros: State and Development Trends”, Giroskop. Navigat., 1998, no. 4(23), pp. 20–45.

    Google Scholar 

  15. Andronova, I.A., “Physical Problems of Fiber Gyros-copy Based on Sagnac Effect”, Usp. Fiz. Nauk, 2002, vol. 172, no. 8, pp. 849–473.

    Article  Google Scholar 

  16. Krobka, N.I., Vvedenie v volokonno-opticheskuyu giroscopiyu. Spetskurs lektsii (Introduction in Fiber Optic Gyroscopy. Lectures) (Moscow FSUE “Centre for Ground-Based Space Infrastructure”, Kuznetsov Scientific Research Institute of Applied Mechanics, 2007).

  17. Lefevre, H.C., “Three-Axis Fiber-Optic Ring Interferometer”, US Patent 4815853.

  18. Goldner, E.L., “Triaxial Fiber Optic Sagnac Interferometer with Single Source and Detector”, US Patent 5184195.

  19. Auch, W., “Progress in Fiber-Optic Gyro Development and Applications”, RTO-AG-339, Ch. 10, 1999.

  20. Krobka, N.I., “Noncommutative Kinematic Effects and Their Specific Features in Laser Gyroscopy and Strapdown Inertial Navigation”, in Proceedings of II St. Petersburg International Conference on Gyroscopic Technology and Navigation (St. Petersburg: CSRI “Elektropribor”, 1995), p. 151.

  21. Krobka, N.I., Lazernye giroskopy i ikh primeneniye v BINS. Ch. I (Laser Gyros and their Application in SIOSs. Part I) (Moscow: NII Prikl. Fiz., 1981).

    Google Scholar 

  22. Krobka, N.I., Cand. Sci. Dissertation (Moscow: NII Prikl. Fiz., 1985).

    Google Scholar 

  23. Krobka, N.I., “Activities on Laser Gyroscopy at NII PM. Memories by Krobka N.I., Deputy Chief Designer of NII PM in Laser Gyroscopy”, in Prioritet-Tochnost’. FSUE Kuznetsov Scientific Research Institute of Applied Mechanics. 50 Let (Priority-Precision. FSUE Kuznetsov Scientific Research Institute of Applied Mechanics), Ed. by I. N. Sapozhnikov (Moscow: Izd. RESTART, 2006), pp. 161–165.

    Google Scholar 

  24. Branets, V.N., Primenenie kvaternionov v zadachakh orientatsii tverdogo tela (Application of Quaternions in Orientation Problems of Solids), Ed. by V.N. Branets, I.P. Shmyglevskii (Moscow: Nauka, 1973).

    Google Scholar 

  25. Gibbs, J.W., and Wilson, E.B., Vector Analysis (New Haven: Wale University Press, 1901).

    MATH  Google Scholar 

  26. Krobka, N.I., “Solution of Kinematic Euler Problem”, Giroskopiya i Navigatsiya, 2005, no. 3(50), pp. 105–122.

    Google Scholar 

  27. Euler, L., “Decouverte d’un Nouveau Principl de Mecanique”, Mem. Acad. Sc. Berlin, 1752, vol. 6, pp. 185–217.

    Google Scholar 

  28. Poisson, S.D., Traite de Mecanique, vol. 2 (Paris: Bachelier, Imprimeur-Librairepour les Math., 1833).

    Google Scholar 

  29. Krobka, N.I., “Symmetry and Asymmetry of Euclidean Space Rotating about a Point”, Presentation at Seminar of Institute of Applied Mechanics, RAS, headed by Academicians D. M. Klimov and V. F. Zhuravlev (September 24, 2007).

    Google Scholar 

  30. Ishlinsky, A.Yu., Nekotorye voprosy teorii avtonomnogo upravleniya ballisticheskimi raketami (Some Problems of the Theory of Autonomous Control of Ballistic Missiles) (Kiev: MVD USSR, 1960).

    Google Scholar 

  31. Stuelpnagel, J., “On the Parameterization of the Three-Dimensional Rotation Group”, SIAM Review, 1964, vol. 6, no. 4, p. 430.

    Article  MathSciNet  Google Scholar 

  32. Gantmakher, F.R., Teoriya matrits (Matrix Theory) (Moscow: Nauka, 1967).

    Google Scholar 

  33. Bortz, J.E., “A New Mathematical Formulation for Strapdown Inertial Navigation”, IEEE, 1971, vol. AES-7, no. 1, pp. 61–66.

    Google Scholar 

  34. Bellman, R., Introduction in Matrix Theory (Moscow: Nauka, 1976) [in Russian].

    Google Scholar 

  35. Krobka, N.I., “Accurate Error Equations of the Strapdown Inertial Navigation Systems”, in Proceedings of Second Soviet-Chinese Symposium of Inertial Technology, ed. by V. G. Peshekhonov (St. Petersburg: CSRI “Elektropribor”, 1992), pp. 43–50.

    Google Scholar 

  36. Krobka, N.I., “On the Influence of Random Perturbations of Angular Velocity on Solution of Kinematic Problem”, Izv. Akad. Nauk SSSR, Mekh. Tv. Tela, 1984, no. 1, pp. 145–150.

    Google Scholar 

  37. Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti (Lectures in Mathematical Stability Theory) (Moscow: Nauka, 1967).

    Google Scholar 

  38. IEEE Std. 952-1997, IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros.

  39. Ishlinsky, A.Yu., Orientatsiya, Giroskopy i inertsial’naya navigatsiya (Orientation, Gyros, and Inertial Navigation) (Moscow: Nauka, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.I. Krobka, 2009, published in Giroskopiya i Navigatsiya, 2009, No. 1, pp. 36–51.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krobka, N.I. A new noncommutative kinematic effect and its manifestations in strapdown inertial orientation systems based on fiber optic gyros. Gyroscopy Navig. 1, 26–36 (2010). https://doi.org/10.1134/S2075108710010050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108710010050

Keywords

Navigation