Skip to main content

Investigation of Corrosion Behaviors of Al–B4C-reinforced Composite Materials in Different Antifreeze Solutions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


In this study, the corrosion behaviors of composite materials produced by adding different amounts of B4C in two different antifreeze (50 and 100% monoethylene glycol) environments are investigated. Aluminum matrix composites produced are characterized by microstructure, density, and hardness measurements. Potentiodynamic polarization technique is used in corrosion studies. While the hardness of composite materials produced is increased with increasing amount of B4C within the materials, the density of materials decreases. As a result of corrosion tests, it is observed that corrosion resistance decreases with the increasing amount of B4C. The highest corrosion resistance was obtained in the matrix material (AlGr) in 100% antifreeze solution.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Pardo, A., Merino, M.C., Merino, S., Viejo, F., Carboneras, M., and Arrabal, R., Corros. Sci., 2005, vol. 47, no. 7, pp. 1750–1764.

    CAS  Article  Google Scholar 

  2. 2

    Ozyurek, D. and Ciftci, I., Sci. Eng. Compos. Mater., 2011, vol. 18, nos. 1–2, pp. 5–12.

    CAS  Article  Google Scholar 

  3. 3

    Ay, H., Özyürek, D., Yıldırım, M., and Bostan, B., Acta Phys. Pol., A, 2016, vol. 129, no. 4, pp. 565–568.

    Article  Google Scholar 

  4. 4

    Simsek, I. and Ozyurek, D., Mater. Sci. Eng., C, 2019, vol. 94, pp. 357–363.

    CAS  Article  Google Scholar 

  5. 5

    Hemanth, J., Wear, 2005, vol. 258, pp. 1732–1744.

    CAS  Article  Google Scholar 

  6. 6

    Han, Y.M. and Grant-Chen, X., Materials, 2015, vol. 8, no. 9, pp. 6455–6470.

    CAS  Article  Google Scholar 

  7. 7

    Erek, H.B., Ozyurek, D., and Asan, A., Acta Phys. Pol., A, 2017, vol. 131, no. 1, pp. 153–155.

    CAS  Article  Google Scholar 

  8. 8

    Simsek, I., J. Boron, 2019, vol. 4, no. 2, pp.100–106.

    Google Scholar 

  9. 9

    Chu, H.S., Liu, K.S., and Yeh, J.W., J. Mater. Res., 2001, vol. 16, no. 5, pp. 1372–1380.

    CAS  Article  Google Scholar 

  10. 10

    Bostan, B., Özdemir, A.T., and Kalkanli, A., Powder Metall., 2004, vol. 47, no. 1, pp. 37–42.

    CAS  Article  Google Scholar 

  11. 11

    Dobrzanski, L.A., Włodarczyk, A., and Adamiak, M., J. Mater. Process. Technol., 2005, vols. 162–163, pp. 27–32.

    Article  Google Scholar 

  12. 12

    Muthazhagan, C., Gnanavelbabu, A., Rajkumar, K., and Bhaskar, G.B., Appl. Mech. Mater., 2014, vol. 591, pp. 51–54.

    Article  Google Scholar 

  13. 13

    Katkar, V.A., Gunasekaran, G., Rao, A.G., and Koli, P.M., Corros. Sci., 2011, vol. 53, no. 9, pp. 2700–2712.

    CAS  Article  Google Scholar 

  14. 14

    Davis, B.W., Moran, P.J., and Natishan, P.M., Corros. Sci., 2000, vol. 42, no. 12, pp. 2187–2192.

    CAS  Article  Google Scholar 

  15. 15

    Ezuber, H., El-Houd, A., and El-Shawesh, F., Mater. Des., 2008, vol. 29, no. 4, pp. 801–805.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to İjlal Şimşek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Şimşek, İ. Investigation of Corrosion Behaviors of Al–B4C-reinforced Composite Materials in Different Antifreeze Solutions. Prot Met Phys Chem Surf 57, 565–569 (2021).

Download citation


  • aluminum matrix composites
  • B4C
  • microstructure
  • corrosion