Skip to main content
Log in

Control of Radiation Defects and Na Clusters in the Process of Radiation Degradation of Natural Stone Salt Single Crystals

  • INVESTIGATION METHODS FOR PHYSICOCHEMICAL SYSTEMS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Using the methods of positron annihilation and optical spectroscopy, the effect of gamma (Co60) and electron irradiation (Cockcroft–Walton accelerator) on NaCl single crystals, followed by annealing at various temperatures. It was found that electron color centers are effective traps of positrons diffusing in the lattice. At the same time, hole centers do not capture positrons. It was shown that positrons are captured by sodium clusters formed in the bulk of NaCl crystals upon annealing (443 K) of irradiated (2650 Mrad) samples. The annihilation characteristics of captured positrons allow us to estimate size of sodium clusters R = 23.0 nm and their concentration Nx = 5.3 × 1017 cm–3. Taking into account the fact that modern optical and positron spectrometers are quite compact and sensitive instruments, the monitoring of the processes of radiation degradation of the geological rock of rock salt can be carried out directly at the disposal sites of radioactive waste rather quickly and with the necessary degree of sensitivity to the accumulation of radiolytic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. In further studies, it was shown that upon irradiation of NaCl samples, H and F centers are formed, which aggregate with the formation of chlorine bubbles and nanoscale sodium clusters. Rapidly growing voids bring chlorine bubbles and Na colloids into contact, which can lead to an instantaneous reverse explosive reaction between radiolytic Na and Cl [35].

REFERENCES

  1. Kerr, R.A., Science, 1999, vol. 283, p. 1626.

    CAS  Google Scholar 

  2. Gies, H., Hild, W., Kuhle, T., and Monig, J., Radiation Effects in Rock Salts, GSF-Report 9/93, München: GSF, 1994.

    Google Scholar 

  3. Den Hartog, H.W., Radiat. Eff. Defects Solids, 1999, vol. 150, nos. 1–4, pp. 167–172. https://doi.org/10.1080/10420159908226225

    Article  Google Scholar 

  4. Lidiard, A.B., Philos. Mag., 1979, vol. 39, p. 647.

    CAS  Google Scholar 

  5. Dubinko, V.I., Turkin, A.A., Vainshtein, D.I., and Hartog, H.W., J. Nucl. Mater., 2001, vol. 289, p. 86.

    CAS  Google Scholar 

  6. Forsyth, R.S. and Werme, L.O., J. Nucl. Mater., 1992, vol. 190, p. 3.

    CAS  Google Scholar 

  7. Positron Solid State Physics, Brandt, W. and Dupasquier, A., Eds., Amsterdam: North Holland, 1983.

    Google Scholar 

  8. Grafutin, V.I. and Prokop’ev, E.P., Usp. Fiz. Nauk, 2002, vol. 172, no. 1, pp. 67–83.

    Google Scholar 

  9. Brandt, W., Appl. Phys., 1974, vol. 5, pp. 1–23.

    CAS  Google Scholar 

  10. Bardyshev, I.I. and Fomkin, A.A., Prot. Met., 2008, vol. 44, no. 4, p. 358.

    CAS  Google Scholar 

  11. Tsivadze, A.Yu., Fridman, A.Ya., Averin, A.A., et al., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 6, pp. 1071–1079.

    CAS  Google Scholar 

  12. Bardyshev, I.I., Gol’danskii, A.V., Kotenev, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 4, pp. 648–651.

    CAS  Google Scholar 

  13. Bardyshev, I.I., Buravov, A.D., Gol’danskii, A.V., Vysotskii, V.V., Kotenev, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 5, pp. 1015–1018.

    CAS  Google Scholar 

  14. Chuang, S.Y., Jan, G.J., and Tseng, P.K., J. Appl. Phys., 1981, vol. 52, p. 233. https://doi.org/10.1063/1.328483

    Article  CAS  Google Scholar 

  15. Nicholas, J.B., Tumosa, C.S., and Ache, H.J., J. Chim. Phys., 1973, vol. 58, p. 2902. https://doi.org/10.1063/1.1679596

    Article  Google Scholar 

  16. Brandt, W. and Paulin, R., Phys. Rev. B, 1973, vol. 8, no. 9, pp. 4125–4133.

    CAS  Google Scholar 

  17. West, R.N., Adv. Phys., 1973, vol. 22, no. 3, pp. 263–383.

    CAS  Google Scholar 

  18. Inabe, K., Takeucbi, N., and Owaki, S., Nucl. Instrum. Methods Phys. Res., Sect. B, 1991, vol. 91, pp. 201–204; Bardyshev, I.I., Skvortsov, A.G., Barsova, L.I., and Spitsyn, V.I., Tezisy dokladov 5-ogo Vsesoyuznogo soveshchaniya po radiatsionnoi fizike i khimii ionnykh kristallov (Proc. 5th All-Union Conference on Radiation Physics and Chemistry of Ion Crystals), Riga, October 4–6, 1983, part 1, p. 284.

  19. Lang, G., DeBenedetti, S., and Smoluchowski, R., Phys. Rev., 1955, vol. 99, pp. 596–598.

    CAS  Google Scholar 

  20. Tumosa, C.S., Nicholas, J.B., and Ache, H.J., J. Phys. Chem., 1971, vol. 75, p. 2030.

    Google Scholar 

  21. Brandt, W. and Waung, H.F., Phys. Rev., 1971, vol. 133, p. 3432.

    Google Scholar 

  22. Compton, W.D., Phys. Rev., 1957, vol. 107, p. 1271.

    CAS  Google Scholar 

  23. Kittel, Ch., Introduction to Solid State Physics, New York: Wiley, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Bardyshev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardyshev, I.I., Kotenev, V.A. Control of Radiation Defects and Na Clusters in the Process of Radiation Degradation of Natural Stone Salt Single Crystals. Prot Met Phys Chem Surf 56, 844–848 (2020). https://doi.org/10.1134/S2070205120040073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120040073

Navigation