Skip to main content
Log in

Corrosion Inhibition of Stainless Steel in HCl Solution Using Newly Aniline and o-Anthranilic Acid Copolymer

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

This paper introduces copolymers of aniline and o-anthranilic acid with different ratio of aniline/o-anthranilic acid (r = 1, 2 and 3) as novel corrosion inhibitors for stainless steel in high-corrosive media. The synthesized polymers were characterized by Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–Vis) and X-ray diffraction (XRD) techniques. After optimization of the aniline/o-anthranilic acid ratio, the inhibition efficiency of the best copolymer was measured for stainless steel in 2 M HCl solution. Electrochemical methods including potentiodynamic polarization and electrochemical impedance spectroscopy were used in different concentrations of copolymer. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the surfaces of the steel after exposed to test solution. It was found that the aniline and o-anthranilic acid copolymer with r = 3 can prevent the penetration of corrosive species into metal surface as protective film on the metal surface by physical and chemical adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Tang, Y., Yang, X., Yang, W., Wan, R., Chen, Y., and Yin, X., Corros. Sci., 2010, vol. 52, pp. 1801–1808.

    Article  Google Scholar 

  2. Khaled, K., Appl. Surf. Sci., 2004, vol. 230, pp. 307–318.

    Article  Google Scholar 

  3. Hong, T., Sun, Y., and Jepson, W., Corros. Sci., 2002, vol. 44, no. 1, pp. 101–112.

    Article  Google Scholar 

  4. Fekry, A. and Ameer, M., Int. J. Hydrogen Energy, 2010, vol. 35, pp. 7641–7651.

    Article  Google Scholar 

  5. Mao, F., Dong, C., and Macdonald, D.D., Corros. Sci., 2015, vol. 98, pp. 192–200.

    Article  Google Scholar 

  6. Thomassen, M., Børresen, B., Hagen, G., and Tunold, R., J. Appl. Electrochem., 2003, vol. 33, pp. 9–13.

    Article  Google Scholar 

  7. Rivera-Grau, L., Casales, M., Regla, I., Ortega-Toledo, D., Ascencio-Gutierrez, J., PorcayoCalderon, J., and Martinez-Gomez, L., Int. J. Electrochem. Sci., 2013, vol. 8, pp. 2491–2503.

    Google Scholar 

  8. Keshavarz, M.H., Esmaeilpour, K., Golikand, A.N., and Shirazi, Z., Z. Anorg. Allg. Chem., 2016, vol. 642, pp. 906–913.

    Article  Google Scholar 

  9. Shirazi, Z., Keshavarz, M.H., Esmaeilpour, K., and Golikand, A.N., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, pp. 359–372.

    Article  Google Scholar 

  10. Gao, G. and Liang, C., Electrochim. Acta, 2007, vol. 52, pp. 4554–4559.

    Article  Google Scholar 

  11. Agrawal, J. P., High Energy Materials: Propellants, Explosives and Pyrotechnics, Weinheim: Wiley, 2010.

    Book  Google Scholar 

  12. Klapötke, T. M., Chemistry of High-Energy Materials, Berlin: Walter de Gruyter, 2015.

    Book  Google Scholar 

  13. Keshavarz, M.H., Pouretedal, H.R., and Semnani, A., J. Hazard. Mater., 2007, vol. 141, pp. 803–807.

    Article  Google Scholar 

  14. Keshavarz, M.H., J. Hazard. Mater., 2009, vol. 171, pp. 786–796.

    Article  Google Scholar 

  15. Keshavarz, M.H., Pouretedal, H.R., and Semnani, A., J. Hazard. Mater., 2009, vol. 167, pp. 461–466.

    Article  Google Scholar 

  16. Keshavarz, M.H., Hayati, M., Ghariban-Lavasani, S., and Zohari, N., Cent. Eur. J. Energ. Mater., 2015, vol. 12, pp. 215–227.

    Google Scholar 

  17. Keshavarz, M.H., Hayati, M., Ghariban-Lavasani, S., and Zohari, N., Z. Anorg. Allg. Chem., 2016, vol. 642, pp. 182–188.

    Article  Google Scholar 

  18. El-Maksoud, S.A. and Fouda, A., Mater. Chem. Phys., 2005, vol. 93, pp. 84–90.

    Article  Google Scholar 

  19. Kanojia, R. and Singh, G., Surf. Eng., 2005, vol. 21, pp. 180–186.

    Article  Google Scholar 

  20. Raicheva, S., Aleksiev, B., and Sokolova, E., Corros. Sci., 1993, vol. 34, pp. 343–350.

    Article  Google Scholar 

  21. Raj, X.J. and Rajendran, N., Int. J. Electrochem. Sci., 2011, vol. 6, pp. 348–366.

    Google Scholar 

  22. Sanya, B., Prog. Org. Coat., 1981, vol. 9, pp. 165–236.

    Article  Google Scholar 

  23. Keshavarz, M.H., Klapötke, T.M., and Sućeska, M., Propellants, Explos., Pyrotech., 2017, vol. 42, pp. 854–856.

    Article  Google Scholar 

  24. Keshavarz, M.H. and Klapötke, T.M., Energetic Compounds: Methods for Prediction of their Performance, Berlin: Walter de Gruyter, 2017.

    Book  Google Scholar 

  25. Zarrouk, A., Zarrok, H., Salghi, R., Hammouti, B., Bentiss, F., Touir, R., and Bouachrine, M., J. Mater. Environ. Sci., 2013, vol. 4, pp. 177–192.

    Google Scholar 

  26. Goudarzi, N. and Farahani, H., Anti-Corros. Methods Mater., 2013, vol. 61, pp. 20–26.

    Article  Google Scholar 

  27. Tao, Z., Zhang, S., Li, W., and Hou, B., Corros. Sci., 2009, vol. 51, pp. 2588–2595.

    Article  Google Scholar 

  28. Benchikh, A., Aitout, R., Makhloufi, L., Benhaddad, L., and Saidani, B., Desalination, 2009, vol. 249, pp. 466–474.

    Article  Google Scholar 

  29. Tallman, D., Pae, Y., and Bierwagen, G., Corrosion, 1999, vol. 55, pp. 779–786.

    Article  Google Scholar 

  30. Tallman, D.E., Spinks, G., Dominis, A., and Wallace, G.G., J. Solid State Electrochem., 2002, vol. 6, pp. 73–84.

    Article  Google Scholar 

  31. Thirumoolan, D., Katkar, V.A., Gunasekaran, G., Kanai, T., and Basha, K.A., Prog. Org. Coat., 2014, vol. 77, pp. 1253–1263.

    Article  Google Scholar 

  32. Finšgar, M., Fassbender, S., Nicolini, F., and Milošev, I., Corros. Sci., 2009, vol. 51, pp. 525–533.

    Article  Google Scholar 

  33. Umoren, S., Ebenso, E., Okafor, P., and Ogbobe, O., Pigm. Resin Technol., 2006, vol. 35, pp. 346–352.

    Article  Google Scholar 

  34. Ebenso, E., Ekpe, U., Umoren, S., Jackson, E., Abiola, O., and Oforka, N., J. Appl. Polym. Sci., 2006, vol. 100, pp. 2889–2894.

    Article  Google Scholar 

  35. Umoren, S. and Ebenso, E., Indian J. Chem. Technol., 2008, vol. 15, pp. 355–363.

    Google Scholar 

  36. Arthur, D.E., Jonathan, A., Ameh, P.O., and Anya, C., Int. J. Ind. Chem., 2013, vol. 4, p. 2.

    Article  Google Scholar 

  37. Ali Fathima Sabirneeza, A. and Subhashini, S., J. Appl. Polym. Sci., 2013, vol. 127, pp. 3084–3092.

    Article  Google Scholar 

  38. Camalet, J., Lacroix, J., Aeiyach, S., Chane-Ching, K., and Lacaze, P., Synth. Met., 1998, vol. 93, pp. 133–142.

    Article  Google Scholar 

  39. Chen, S.A. and Fang, W.G., Macromolecules, 1991, vol. 24, pp. 1242–1248.

    Article  Google Scholar 

  40. Huang, W.-S., Humphrey, B.D., and MacDiarmid, A.G., J. Chem. Soc., Faraday Trans. 1, 1986, vol. 82, pp. 2385–2400.

    Article  Google Scholar 

  41. Golikand, A.N., Bagherzadeh, M., and Shirazi, Z., Electrochim. Acta, 2017, vol. 247, pp. 116–124.

    Article  Google Scholar 

  42. Kitani, A., Yano, J., and Sasaki, K., J. Electroanal. Chem. Interfacial Electrochem., 1986, vol. 209, pp. 227–232.

    Article  Google Scholar 

  43. Lofton, E.P., Thackeray, J.W., and Wrighton, M.S., J. Phys. Chem., 1986, vol. 90, pp. 6080–6083.

    Article  Google Scholar 

  44. Rashid, M., Sabir, S., Rahim, A.A., and Waware, U., J. Appl. Chem., 2014, vol. 2014, p. 973653.

    Article  Google Scholar 

  45. Yi, Y., Liu, G., Jin, Z., and Feng, D., Int. J. Electrochem. Sci., 2013, vol. 8, pp. 3540–3550.

    Google Scholar 

  46. Jeyaprabha, C., Sathiyanarayanan, S., and Venkatachari, G., Appl. Surf. Sci., 2006, vol. 253, pp. 432–438.

    Article  Google Scholar 

  47. da Silva, J.E.P., de Torresi, S.I.C., and Torresi, R.M., Corros. Sci., 2005, vol. 47, pp. 811–822.

    Article  Google Scholar 

  48. Nateghi, M. and Borhani, M., React. Funct. Polym., 2008, vol. 68, pp. 153–160.

    Article  Google Scholar 

  49. Ayad, M., Salahuddin, N., Abou-Seif, A., and Alghaysh, M., Eur. Polym. J., 2008, vol. 44, pp. 426–435.

    Article  Google Scholar 

  50. Pasto, D. and Johnson, C., Organic Structure Determination, Englewood Cliffs, NJ: Prentice-Hall, 1969.

    Google Scholar 

  51. Williams, R., Srivastava, G., and McGovern, I., Rep. Prog. Phys., 1980, vol. 43, p. 1357.

    Article  Google Scholar 

  52. Trchová, M., Šeděnková, I., Konyushenko, E.N., Stejskal, J., Holler, P., and Ćirić-Marjanović, G., J. Phys. Chem. B, 2006, vol. 110, pp. 9461–9468.

    Article  Google Scholar 

  53. Ćirić-Marjanović, G., Blinova, N.V., Trchová, M., and Stejskal, J., J. Phys. Chem. B, 2007, vol. 111, pp. 2188–2199.

    Article  Google Scholar 

  54. Li, X.-G., Huang, M.-R., and Yang, Y., Polymer, 2001, vol. 42, pp. 4099–4107.

    Article  Google Scholar 

  55. Mav, I., Žigon, M., and Vohlídal, J., Wiley Online Library, 2004, pp. 307–314.

  56. Solmaz, R., Corros. Sci., 2014, vol. 79, pp. 169–176.

    Article  Google Scholar 

  57. Solmaz, R., Corros. Sci., 2014, vol. 81, pp. 75–84.

    Article  Google Scholar 

  58. de Souza, F.S. and Spinelli, A., Corros. Sci., 2009, vol. 51, pp. 642–649.

    Article  Google Scholar 

  59. Markhali, B., Naderi, R., Mahdavian, M., Sayebani, M., and Arman, S., Corros. Sci., 2013, vol. 75, pp. 269–279.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank the research committee of Malek-ashtar University of Technology (MUT) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Keshavarz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirazi, Z., Keshavarz, M.H., Golikand, A.N. et al. Corrosion Inhibition of Stainless Steel in HCl Solution Using Newly Aniline and o-Anthranilic Acid Copolymer. Prot Met Phys Chem Surf 55, 795–802 (2019). https://doi.org/10.1134/S207020511904021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020511904021X

Keywords:

Navigation