Skip to main content
Log in

Adsorption of Hydrogen in Microporous Carbon Adsorbents of Different Origin

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Adsorption of hydrogen in four types of activated carbons of different origin with specific micropore volumes ranging from 0.46 to 0.96 cm3/g is studied at temperatures of 303, 313, 323, and 333 K and pressures up to 20 MPa. The saturation adsorption of hydrogen vapors in the considered types of activated carbons is calculated at the hydrogen boiling point (20.38 K) and a pressure of 0.101 MPa using the Dubinin theory of volume filling of micropores (TVFM). The theoretical calculations show that the type FAS-2008 adsorbent, which is produced using liquid-phase furfural polymerization, has the highest adsorption capacity. Using the TVFM and taking into account linearity of the adsorption isosteres, we also estimate adsorption of hydrogen in the type AU3:5 slit-shaped microporous carbon adsorbent at a temperature of 303 K and pressures 10 and 20 MPa. The collected experimental data and theoretical calculations are compared to the data for 101 kPa and 20.38 K. The highest hydrogen adsorption, 7.9 wt %, at 20 MPa and 303 K is predicted for a model slit-shaped microporous graphene-based adsorbent, type AU3:5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. m3(STP)/m3 is a cubic meter of hydrogen at standard temperature and pressure (101 kPa, 293 K) per cubic meter of the hydrogen storage tank.

REFERENCES

  1. Gamburg, D.Yu., Semenov, V.P., Dubovkin, N.F., and Smirnova, L.N., Vodorod. Svoistva, poluchenie, khranenie, transportirovanie, primenenie (Hydrogen. Properties, Synthesizing, Storage, Transportation, Application), Gamburg, D.Yu. and Dubovkin, N.F., Eds., Moscow: Khimiya, 1989.

    Google Scholar 

  2. Zaluska, A., Zaluski, L., and Strom-Olsen, J.O., J. Alloys Compd., 2000, vol. 298, p. 125.

    Article  Google Scholar 

  3. A Multiyear Plan for the Hydrogen R&D Program. Rationale, Structure, and Technology Roadmaps, Washington, DC: Office of Power Technologies, Energy Efficiency and Renewable Energy, U.S. Department of Energy, 1999, p. 55.

  4. Bradley, T.H., Moffitt, B.A., Mavris, D.N., and Parekh, D.E., J. Power Sources, 2007, vol. 171, p. 793.

    Article  Google Scholar 

  5. Stroman, R.O., Schuette, M.W., Swider-Lyons, K., Rodgers, J.A., and Edwards, D.J., Int. J. Hydrogen Energy, 2014, vol. 39, p. 11279.

    Article  Google Scholar 

  6. Dubinin, M.M., Adsorbtsiya i poristost' (Adsorption and Porosity), Moscow: Military Academy of Chemical Defense Named after Marshal of the USSR S.K. Timoshenko, 1972.

  7. Vlasov, A.I., Bakaev, V.A., Dubinin, M.M., and Serpinskii, V.V., Dokl. Akad. Nauk SSSR, 1981, vol. 260, no. 4, p. 904.

    Google Scholar 

  8. Keffer, D., Davis, H.T., and McCormick, A.V., J. Phys. Chem., 1996, vol. 100, no. 2, p. 638.

    Article  Google Scholar 

  9. Fomkin, A.A., Anuchin, K.M., Korotych, A.P., and Tolmachev, A.M., Fizikokhim. Poverkhn. Zashch. Mater., 2014, vol. 50, no. 2, p. 156. Anuchin, K.M., Fomkin, A.A., Korotych, A.P., and Tolmachev, A.M., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 2, p. 173.

    Article  Google Scholar 

  10. Shkolin, A.V., Fomkin, A.A., Tsivadze, A.Yu., Anuchin, K.M., Men’shchikov, I.E., and Pulin, A.L., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, p. 955.

    Article  Google Scholar 

  11. Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Foundations of Adsorption Technique), Moscow: Khimiya, 1976.

  12. Carpetis, C. and Peschka, W., Int. J. Hydrogen Energy, 1980, vol. 5, p. 539.

    Article  Google Scholar 

  13. Srtobel, R., Jorissen, L., Schiermann, T., Trapp, V., Schutz, W., Bohmhammel, K., Wolf, G., and Garche, J., J. Power Sources, 1999, vol. 84, p. 221.

    Article  Google Scholar 

  14. Tibbetts, G.G., Meisher, G.P., and Olk, C.H., Carbon, 2001, vol. 39, p. 2291.

    Article  Google Scholar 

  15. Shindo, K., Kondo, T., Arakowa, M., and Sakurai, Y., J. Alloys Compd., 2003, vol. 359, p. 267.

    Article  Google Scholar 

  16. Sethia, G. and Sayari, A., Carbon, 2016, vol. 99, p. 289.

    Article  Google Scholar 

  17. Kostoglou, N., Koczwara, C., Prehal, C., and Terziyska, V., Nano Energy, 2017, vol. 40, p. 49.

    Article  Google Scholar 

  18. Breck, D.W., Zeolite Molecular Sieves: Structure, Chemistry, and Use, New York: Wiley, 1973.

    Google Scholar 

  19. Isaeva, V.I. and Kustov, L.M., Ross. Khim. Zh., 2006, no. 6, p. 56.

  20. Hirsher, H., Becher, M., Halushka, M., Dettlaff-Weglikowska, U., Quintel, A., Duesberg, G.S., Choi Y.-M., Downes, F., Hulman, M., Roth, C., Stepanek, I., and Bernier, P., Appl. Phys. A: Mater. Sci. Process., 2001, vol. 72, p. 129.

    Article  Google Scholar 

  21. Parilla, P.A., Dillon, A.C., Gennat, T., Alleman, J.L., Jones, K.M., and Heben, M.J., Mater. Res. Soc. Symp. Proc., 2001, vol. 633, p. 1.

    Google Scholar 

  22. Park, C., Anderson, P.E., Tan, C.D., Hidalgo, R., and Rodrigez, N.M., J. Phys. Chem. B, 1999, vol. 103, p. 10572.

    Article  Google Scholar 

  23. Tarasov, B.P. and Goldshleger, N.F., Int. Sci. J. “Altern. Energy Ecol.” (ISJAEE), 2002, no. 3, p. 20.

  24. Yakovlev, V.Yu., Shkolin, A.V., Fomkin, A.A., and Men’shchikov, I.E., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 5, p. 754.

    Article  Google Scholar 

  25. Fomkin, A.A. and Sinitsyn, V.A., Russ. Chem. Bull., 2009, vol. 58, no. 4, p. 1.

    Article  Google Scholar 

  26. Fomkin, A.A., Sinitsyn, V.A., and Gur’yanov, V.V., Colloid J., 2008, vol. 70, no. 3, p. 372.

    Article  Google Scholar 

  27. Wang, D.-Y., Gong, M., Chou, H.-L., and Pan, C.-J., J. Am. Chem. Soc., 2015, vol. 137, no. 4, p. 1587.

    Article  Google Scholar 

  28. Dresselhaus, M.S., Williams, K.A., and Eklund, P.C., MRS Bull., 1999, vol. 24, no. 11, p. 45.

    Article  Google Scholar 

  29. Ivakhnyuk, G.K., Sevryugov, L.B., and Plachenov, T.G., Poluchenie, struktura i svoistva adsorbentov (Synthesizing, Structure, and Properties of Adsorbents), Leningrad: Lensovet Leningrad Institute of Technology, 1977, p. 19.

  30. Fedorov, N.F., Ivakhnyuk, G.K., Gavrilov, D.N., Tetenev, V.V., Smetanin, G.N., Samonin, V.V., Babkin, O.E., and Zaitsev, Yu.A, in Uglerodnye adsorbenty i ikh primenenie v promyshlennosti (Carbon Adsorbents and their Application for Industry), Plachenov, T.G., Ed., Moscow: Nauka, 1983, p. 20.

  31. Shkolin, A.V. and Fomkin, A.A., Meas. Tech., 2018, vol. 61, no. 4, p. 395.

    Article  Google Scholar 

  32. Pribylov, A.A., Kalashnikov, S.M., and Serpinskii, V.V., Izv. Akad. Nauk SSSR, Ser. Khim., 1990, no. 6, p. 1233.

  33. Yin, Y.F., Mays, T., and McEnaney, B., Langmuir, 2000, vol. 16, p. 10521.

    Article  Google Scholar 

  34. Barrer, R.M. and Papadopoulos, R., Proc. R. Soc. London, Ser. A, 1972, vol. 326, p. 331.

    Article  Google Scholar 

  35. Shkolin, A.V., Fomkin, A.A., and Yakovlev, V.Yu., Russ. Chem. Bull., 2007, vol. 56, no. 3, p. 393.

    Article  Google Scholar 

  36. Shekhovtsova, L.G. and Fomkin, A.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1992, no. 1, p. 19.

  37. Shkolin, A.V. and Fomkin, A.A., Colloid J., 2009, vol. 71, no. 1, p. 119.

    Article  Google Scholar 

  38. Shkolin, A.V., Potapov, S.V., and Fomkin, A.A., Colloid J., 2015, vol. 77, no. 6, p. 812.

    Article  Google Scholar 

  39. Potapov, S.V., Shkolin, A.V., and Fomkin, A.A., Colloid J., 2014, vol. 76, no. 3, p. 351.

    Article  Google Scholar 

  40. Fomkin, A.A., Serpinskii, V.V., and Fidler, K., Izv. Akad. Nauk SSSR, Ser. Khim., 1982, no. 6, p. 1207.

  41. Dubinin, M.M., in Uglerodnye adsorbenty i ikh primenenie v promyshlennosti (Carbon Adsorbents and Their Application for Industry), Moscow: Nauka, 1983, p. 100.

  42. Shkolin, A.V., Fomkin, A.A., and Sinitsyn, V.A., Colloid J., 2008, vol. 70, no. 6, p. 796.

    Article  Google Scholar 

  43. Tarkovskaya, I.A., Okislennyi ugol’ (Oxygenated Coal), Kiev: Naukova Dumka, 1981.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Fomkin.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomkin, A.A., Pribylov, A.A., Murdmaa, K.O. et al. Adsorption of Hydrogen in Microporous Carbon Adsorbents of Different Origin. Prot Met Phys Chem Surf 55, 413–419 (2019). https://doi.org/10.1134/S2070205119030134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119030134

Keywords:

Navigation